Biocontrol Strategy of Bacitracin Stabilization of the Fuel Ethanol Fermentation Process in Industries

Authors

  • Zainab Abdul Jabbar Al-Khafaji College of Biotechnology, Al-Qadisiyah University
  • Roqaya Hussein Abeid Al-Qadisiyah University, College of Dentistry
  • Zahraa Falah Azeez Collage of Biotechnology, University of Al-Qadisiyah, Iraq

DOI:

https://doi.org/10.51699/cajmns.v7i1.3100

Keywords:

Bacteriocin, Biocontrol, Biofuel, Fermentation, Contamination, Lactic Acid Bacteria (LAB), Ethanol, Butanol, Antimicrobial Peptide, Industrial Microbiology

Abstract

Microbial contamination of industrial-scale bioprocesses, especially biofuel fermentations, has constantly posed serious threats to the production of bioproducts, causing losses in the economy, low production and instability in the process. Conventional control strategies such as antibiotics, chemical preservatives, and sterile filtration have weaknesses, i.e, cost, government regulations, customer opposition and emergence of resistant strains. Ribosomally synthesized antimicrobial peptides produced by bacteria (bacteriocins) have proven to be potential, sustainable and effective biocontrol agents. This is a summary of the recent articles in the field of application of bacteriocins to protect biofuel fermentations (primarily ethanol and butanol). We delve into their range of activity, their action against typical contaminants (lactic acid bacteria, wild yeasts, clostridia), their methods of use (in-situ synthesis by starter cultures, extrinsic addition, or transgenic producer strains), and their tolerance to process conditions. We weigh up the merits, such as target specificity, biodegradability and little effect on fermentation microbiota against the problems of production expenditure, stability in multifaceted fermentation broths and government acceptance. The incorporation and fusion of bacteriocins; in particular, using metabolic engineering and combinatorial synergies, is a change paradigm to more vigorous, efficient, and sustainable industrial biotechnology.

References

Chandel AK, Garlapati VK, Jeevan Kumar S, Hans M, Singh AK, Kumar S. The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining. 2020;14(4):830-44.

Riaz S, Mazhar S, Abidi SH, Syed Q, Abbas N, Saleem Y, et al. Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications. Archives of Microbiology. 2022;204(11):672.

Lin Z, Cong W, Zhang Ja. Biobutanol production from acetone–butanol–ethanol fermentation: developments and prospects. Fermentation. 2023;9(9):847.

Hu MZ, Engtrakul C, Bischoff BL, Jang GG, Theiss TJ, Davis MF. Superhydrophobic and superhydrophilic surface-enhanced separation performance of porous inorganic membranes for biomass-to-biofuel conversion applications. Separation Science and Technology. 2017;52(3):528-43.

Efremenko E, Senko O, Stepanov N, Aslanli A, Maslova O, Lyagin I. Quorum sensing as a trigger that improves characteristics of microbial biocatalysts. Microorganisms. 2023;11(6):1395.

Di Z, Huo Y, Wang G, Zhuang Y. Progress in the Biosynthesis of Cosmetic Ingredients through Engineering of Saccharomyces cerevisiae. ACS Synthetic Biology. 2025;14(8):2955-71.

Samuel PO, Edo GI, Oloni GO, Ugbune U, Ezekiel GO, Essaghah AEA, et al. Effects of chemical contaminants on the ecology and evolution of organisms a review. Chemistry and Ecology. 2023;39(10):1071-107.

Chiocchetti GM, Jadán-Piedra C, Monedero V, Zúñiga M, Vélez D, Devesa V. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Critical reviews in food science and nutrition. 2019;59(10):1534-45.

Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, et al. The complex role of lactic acid bacteria in food detoxification. Nutrients. 2022;14(10):2038.

Azevedo POdSd, Gierus M. Lactic Acid Bacteria and Bacteriocins in Feed Preservation: Mechanisms and Antifungal Properties. Grass and Forage Science. 2025;80(1):e12711.

Nguyen TH. Post-fermentation Influence of Saccharomyces cerevisiae on Acetaldehyde in Wine: University of California, Davis; 2017.

Mukherjee V, Radecka D, Aerts G, Verstrepen KJ, Lievens B, Thevelein JM. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation. Biotechnology for biofuels. 2017;10(1):216.

Labagnara T. Wine yeast biodiversity during spontaneous fermentation in response to environmental stress. 2014.

Andrés-Barrao C, Barja F. Acetic acid bacteria strategies contributing to acetic acid resistance during oxidative fermentation. Acetic Acid Bacteria: CRC Press; 2017. p. 92-119.

Behl M, Thakar S, Ghai H, Sakhuja D, Bhatt AK. Fundamentals of fermentation technology. Basic Biotechniques for Bioprocess and Bioentrepreneurship: Elsevier; 2023. p. 313-28.

Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. Environmental Science and Pollution Research. 2022;29(32):47988-8019.

Mishra R, Raj A, Saurabh S. Present Status and Future Prospect of Butanol Fermentation. Production of Biobutanol from Biomass. 2023:105-31.

Cao Y, Khanal D, Kim J, Chang RYK, Byun AS, Morales S, et al. Stability of bacteriophages in organic solvents for formulations. International journal of pharmaceutics. 2023;646:123505.

Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, et al. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. Journal of Oral Microbiology. 2024;16(1):2344272.

Mignogna D, Szabó M, Ceci P, Avino P. Biomass energy and biofuels: perspective, potentials, and challenges in the energy transition. Sustainability. 2024;16(16):7036.

Teferra BT. Designing and planning of Ethiopia's biomass-to-biofuel (bioethanol and biodiesel) supply chain through integrated strategic-tactical optimization model under economic and environmental dimensions: Institut National Polytechnique de Toulouse-INPT; Addis Ababa university; 2022.

Yap CK, Peng S. Cleaning contaminated soils by using microbial remediation: a review and challenges to the weaknesses. American journal of biomedical science and research. 2019;2(3).

Industry H, Industry L, Generation P, America WK, America CK, Doing HAW, et al. Investigating the Effectiveness of Antibiotic Combinations Utilized in Fuel Ethanol Production.

Gupta J, Roy D, Thakur IS, Kumar M. Environmental DNA insights in search of novel genes/taxa for production of biofuels and biomaterials. Biomass, Biofuels, Biochemicals: Elsevier; 2022. p. 111-35.

Lalah JO, Otieno PO, Odira Z, Ogunah JA. Pesticides: chemistry, manufacturing, regulation, usage and impacts on population in Kenya. Intech Open Journal; 2022.

Skinner KA, Leathers TD. Bacterial contaminants of fuel ethanol production. Journal of Industrial Microbiology and Biotechnology. 2004;31(9):401-8.

Beckner M, Ivey ML, Phister TG. Microbial contamination of fuel ethanol fermentations. Letters in applied microbiology. 2011;53(4):387-94.

Rich JO, Anderson AM, Leathers TD, Bischoff KM, Liu S, Skory CD. Microbial contamination of commercial corn-based fuel ethanol fermentations. Bioresource Technology Reports. 2020;11:100433.

Daum MA. Controlling bacterial contaminants in sugarcane ethanol fermentations: University of Illinois at Urbana-Champaign; 2016.

Zhuang J, Kim S, Zhang M, Ryu J, Nonkumwong J, Srisombat L, et al. MgFe2O4 Nanoparticle/Peracetic Acid Hybrids for Catalytic Oxidative Depolymerization of Lignin. ACS applied nano materials. 2023;6(12):10758-67.

Albers E, Johansson E, Franzén CJ, Larsson C. Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol Biofuels. 2011;4(1):59.

Guan Y, Lv H, Wu G, Chen J, Wang M, Zhang M, et al. Effects of Lactic Acid Bacteria Reducing the Content of Harmful Fungi and Mycotoxins on the Quality of Mixed Fermented Feed. Toxins (Basel). 2023;15(3).

Reis VR, Bassi APG, Cerri BC, Almeida AR, Carvalho IGB, Bastos RG, et al. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. AMB Express. 2018;8(1):23.

Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms. 2020;8(5).

Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, et al. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications. J Appl Microbiol. 2024;135(11).

Velez AZ, Radin JN, Kennedy EN, Parsons JB, Tong HM, Jung E, et al. The innate immune protein calprotectin ablates the bactericidal activity of β-lactam antibiotics. Proc Natl Acad Sci U S A. 2026;123(3):e2513462123.

Chen X, Bai H, Mo W, Zheng X, Chen H, Yin Y, et al. Lactic Acid Bacteria Bacteriocins: Safe and Effective Antimicrobial Agents. Int J Mol Sci. 2025;26(9).

Oftedal TF, Løvdal T, Kjos M. The phage shock protein response of Listeria monocytogenes influences tolerance to the multipeptide bacteriocin garvicin KS. Appl Microbiol Biotechnol. 2026;110(1):11.

Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol. 2013;11(2):95-105.

Bauer R, Dicks LM. Mode of action of lipid II-targeting lantibiotics. Int J Food Microbiol. 2005;101(2):201-16.

Whitby CB, Saunders JR, Rodriguez J, Pickup RW, McCarthy A. Phylogenetic differentiation of two closely related Nitrosomonas spp. That inhabit different sediment environments in an oligotrophic freshwater lake. Appl Environ Microbiol. 1999;65(11):4855-62.

Iseppi R, Messi P, Camellini S, Sabia C. Bacteriocin activity of Lactobacillus brevis and Lactobacillus paracasei ssp. paracasei. J Med Microbiol. 2019;68(9):1359-66.

Singh PK, Chittpurna, Ashish, Sharma V, Patil PB, Korpole S. Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9. PLoS One. 2012;7(3):e31498.

Pan G, Zhao X, Wang C, Tian Y, Gao J, Sha W, et al. Antibacterial Activity of Bacteriocin-Like Inhibitory Substances (BLIS) of Levilactobacillus brevis PG-11 against Salmonella Typhimurium. J Microbiol Biotechnol. 2025;35:e2502011.

Iliev I, Yahubyan G, Apostolova-Kuzova E, Gozmanova M, Mollova D, Iliev I, et al. Characterization and Probiotic Potential of Levilactobacillus brevis DPL5: A Novel Strain Isolated from Human Breast Milk with Antimicrobial Properties Against Biofilm-Forming Staphylococcus aureus. Microorganisms. 2025;13(1).

Lee JA, Kim HU, Na JG, Ko YS, Cho JS, Lee SY. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol. 2023;41(6):798-816.

Le Corre E, Tareb R, Rogniaux H, Annic B, Bouchaud G, Dijk W. Enterococcus faecalis CIRM-BIA2928 induces gluten proteolysis and reduces gluten immunoreactivity during fermentation. Benef Microbes. 2025:1-17.

Peng J, Zhang L, Gu ZH, Ding ZY, Shi GY. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Lett Appl Microbiol. 2012;55(2):128-34.

Tareen S, Schupp PJ, Iqbal N, Wink J. Exploring the Antibiotic Production Potential of Heterotrophic Bacterial Communities Isolated from the Marine Sponges Crateromorpha meyeri, Pseudaxinella reticulata, Farrea similaris, and Caulophacus arcticus through Synergistic Metabolomic and Genomic Analyses. Mar Drugs. 2022;20(7).

Mokoena MP, Omatola CA, Olaniran AO. Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules. 2021;26(22).

Beckner M, Ivey ML, Phister TG. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol. 2011;53(4):387-94.

Taylor S, Waite-Cusic J. Evaluation of bioprotective potential of Bacillus species cell-free supernatant against Listeria species in cultured ingredient for application to cottage cheese. J Dairy Sci. 2026.

Carriel LM, Opitz Á, Navarro J, Herrera-Feijoo RJ, Leyton M, Valdebenito D, et al. Lactic acid bacteria and their importance in the biopreservation of meat and meat product: a review. Braz J Biol. 2026;85:e298936.

Polat A, Demirgül F, Şimşek Ö. Optimization and spray-drying of nisin-enriched fermentation broth for antimicrobial powder production. Prep Biochem Biotechnol. 2025:1-11.

Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderón LA, et al. Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microb Cell Fact. 2015;14:13.

Murakami A, Ikeda H, Yoda M, Namai F, Sato T, Shimosato T. Construction of genetically modified lactic acid bacteria producing an Anti-Interleukin-31 receptor A Single-chain variable fragment. Mol Biol Rep. 2025;53(1):81.

Parada Fabián JC, Álvarez Contreras AK, Natividad Bonifacio I, Hernández Robles MF, Vázquez Quiñones CR, Quiñones Ramírez EI, et al. Toward safer and sustainable food preservation: a comprehensive review of bacteriocins in the food industry. Biosci Rep. 2025;45(4):277-302.

Duduyemi A, Okereke O, Ujor VC. Amberlite resin-mediated lactate removal from whey permeate enhances butanol production by Clostridium beijerinckii. Bioresour Technol. 2026;442:133727.

Bai J, Si G, Wang R, Su S, Fan J, He X, et al. Gut Metabolite Indoleacrylic Acid Suppresses Osteoclast Formation by AHR mediated NF-κB Signaling Pathway. Int J Biol Sci. 2026;22(2):951-69.

Barber JM, Robb FT, Webster JR, Woods DR. Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol. 1979;37(3):433-7.

Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci. 2021;8:654038.

Broda M, Yelle DJ, Serwańska K. Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules. 2022;27(24).

Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol. 2021;12:630695.

Seo SO, Park SK, Jung SC, Ryu CM, Kim JS. Anti-Contamination Strategies for Yeast Fermentations. Microorganisms. 2020;8(2).

Xia J, Yang Y, Liu CG, Yang S, Bai FW. Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production. Trends Biotechnol. 2019;37(9):960-72.

Maleki F, Changizian M, Zolfaghari N, Rajaei S, Noghabi KA, Zahiri HS. Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains. Sci Rep. 2021;11(1):13731.

Praveen M, Brogi S. Microbial Fermentation in Food and Beverage Industries: Innovations, Challenges, and Opportunities. Foods. 2025;14(1).

Leal-Sánchez MV, Jiménez-Díaz R, Maldonado-Barragán A, Garrido-Fernández A, Ruiz-Barba JL. Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl Environ Microbiol. 2002;68(9):4465-71.

Krauss S, Harbig TA, Rapp J, Schaefle T, Franz-Wachtel M, Reetz L, et al. Horizontal Transfer of Bacteriocin Biosynthesis Genes Requires Metabolic Adaptation To Improve Compound Production and Cellular Fitness. Microbiol Spectr. 2023;11(1):e0317622.

Shafique B, Ranjha M, Murtaza MA, Walayat N, Nawaz A, Khalid W, et al. Recent Trends and Applications of Nanoencapsulated Bacteriocins against Microbes in Food Quality and Safety. Microorganisms. 2022;11(1).

Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front Microbiol. 2017;8:1205.

Putnik P, Pavlić B, Šojić B, Zavadlav S, Žuntar I, Kao L, et al. Innovative Hurdle Technologies for the Preservation of Functional Fruit Juices. Foods. 2020;9(6).

Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, et al. An overview of fermentation in the food industry - looking back from a new perspective. Bioresour Bioprocess. 2023;10(1):85.

Todorov SD, Popov I, Weeks R, Chikindas ML. Use of Bacteriocins and Bacteriocinogenic Beneficial Organisms in Food Products: Benefits, Challenges, Concerns. Foods. 2022;11(19).

Ríos Colombo NS, Perez-Ibarreche M, Draper LA, O'Connor PM, Field D, Ross RP, et al. Impact of bacteriocin-producing strains on bacterial community composition in a simplified human intestinal microbiota. Front Microbiol. 2023;14:1290697.

Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, et al. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal. 2022;36(1):e24093.

Fields FO. Use of Bacteriocins in Food: Regulatory Considerations. J Food Prot. 1996;59(13):72-7.

Yount NY, Weaver DC, de Anda J, Lee EY, Lee MW, Wong GCL, et al. Discovery of Novel Type II Bacteriocins Using a New High-Dimensional Bioinformatic Algorithm. Front Immunol. 2020;11:1873.

Mwangi J, Kamau PM, Thuku RC, Lai R. Design methods for antimicrobial peptides with improved performance. Zool Res. 2023;44(6):1095-114.

Ting TY, Li Y, Bunawan H, Ramzi AB, Goh HH. Current advancements in systems and synthetic biology studies of Saccharomyces cerevisiae. J Biosci Bioeng. 2023;135(4):259-65.

Downloads

Published

2026-02-04

How to Cite

Al-Khafaji, Z. A. J. ., Abeid, R. H. ., & Azeez, Z. F. . (2026). Biocontrol Strategy of Bacitracin Stabilization of the Fuel Ethanol Fermentation Process in Industries. Central Asian Journal of Medical and Natural Science, 7(1), 688–702. https://doi.org/10.51699/cajmns.v7i1.3100

Issue

Section

Articles