Beyond Biopsy: Could Nrf2 and microRNA-222 Redefine Thyroid Nodule Diagnosis?
Abstract
Thyroid nodules are common and present a diagnostic challenge. Fine-needle aspiration cytology (FNAC) is frequently used but may yield indeterminate results. Molecular biomarkers such as Nuclear factor erythroid 2–related factor 2 (Nrf2) and microRNA 222 (miR 222) have emerged as promising tools to improve diagnostic accuracy. A case-control study was conducted on 87 subjects: 16 patients with papillary thyroid carcinoma (PTC), 39 patients with benign thyroid disorders, and 32 healthy controls. The study was conducted at Safeer Al-Imam Al-Hussain (A.S) Surgical Hospital and Al-Kafeel Superspeciality Hospital in Kerbala city.Serum Nrf2 levels were measured using ELISA, while miR 222 expression was analyzed using RT-PCR. Fold change (FC) of miR 222 showed the highest sensitivity (96.88%) and NPV (83.33%) in detecting simple nodules, with an AUC of 0.650. Ct miR 222 demonstrated the highest specificity (83.33%) and PPV (89.47%), making it useful as a confirmatory marker. Nrf2 exhibited poor diagnostic performance (AUC = 0.480). In multinodular cases, both Nrf2 and FC miR 222 showed fair discrimination ability (AUCs ≈ 0.636–0.637). The study confirms the high prevalence of multifocal benign nodularity in PTC patients (61.8%). Overall, the modest AUC values for all markers suggest that no single biomarker is sufficient for definitive diagnosis of thyroid nodules. The choice of biomarker depends on clinical objectives: FC microRNA-222 for maximizing detection (screening) and Ct.microRNA-222 (for simple nodules) or Nrf2 (for multi-nodules) for confirming diagnoses and minimizing false positives. Future research should focus on combining these biomarkers into panels to improve diagnostic accuracy.
References
D. S. Dean and H. Gharib, “Epidemiology of thyroid nodules,” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 22, no. 6, pp. 901–911, Dec. 2008.
E. L. Mazzaferri, “Management of a solitary thyroid nodule,” New England Journal of Medicine, vol. 328, no. 8, pp. 553–559, Feb. 1993.
J. Mitchell and L. Yip, “Decision making in indeterminate thyroid nodules and the role of molecular testing,” Surgical Clinics, vol. 99, no. 4, pp. 587–598, Aug. 2019.
T. G. Pemayun, “Current diagnosis and management of thyroid nodules,” Acta Medica Indonesiana, vol. 48, no. 3, pp. 247–257, Jul. 2016.
B. R. Haugen, E. K. Alexander, K. C. Bible, G. M. Doherty, S. J. Mandel, Y. E. Nikiforov, et al., “2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer,” Thyroid, vol. 26, no. 1, pp. 1–33, Jan. 2016.
F. Raue and K. Frank-Raue, “Thyroid cancer: risk-stratified management and individualized therapy,” Clinical Cancer Research, vol. 22, no. 20, pp. 5012–5021, Oct. 2016.
C. Bellevicine, I. Migliatico, R. Sgariglia, M. Nacchio, E. Vigliar, P. Pisapia, et al., “Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARγ alterations in different Bethesda diagnostic categories,” Cancer Cytopathology, vol. 128, no. 2, pp. 107–118, Feb. 2020.
S. L. Xu, Y. Y. Tian, Y. Zhou, and L. Q. Liu, “Diagnostic value of circulating microRNAs in thyroid carcinoma: A systematic review and meta-analysis,” Clinical Endocrinology, vol. 93, no. 4, pp. 489–498, Oct. 2020.
J. Feldkamp, D. Führer, M. Luster, T. J. Musholt, C. Spitzweg, and M. Schott, “Fine needle aspiration in the investigation of thyroid nodules,” Deutsches Ärzteblatt International, vol. 113, no. 20, pp. 353–359, May 2016.
K. J. Nicholson, M. S. Roberts, K. L. McCoy, S. E. Carty, and L. Yip, “Molecular testing versus diagnostic lobectomy in Bethesda III/IV thyroid nodules: a cost-effectiveness analysis,” Thyroid, vol. 29, no. 9, pp. 1237–1243, Sep. 2019.
M. Y. Roth, R. L. Witt, and D. L. Steward, “Molecular testing for thyroid nodules: review and current state,” Cancer, vol. 124, no. 5, pp. 888–898, Mar. 2018.
L. Yip, L. I. Wharry, M. J. Armstrong, A. Silbermann, K. L. McCoy, M. T. Stang, et al., “A clinical algorithm for fine-needle aspiration molecular testing effectively guides the appropriate extent of initial thyroidectomy,” Annals of Surgery, vol. 260, no. 1, pp. 163–168, Jul. 2014.
E. Labourier and T. J. Fahey III, “Preoperative molecular testing in thyroid nodules with Bethesda VI cytology: Clinical experience and review of the literature,” Diagnostic Cytopathology, vol. 49, no. 4, pp. E175–E180, Apr. 2021.
J. J. Zhao, Z. B. Chu, Y. Hu, J. Lin, Z. Wang, M. Jiang, et al., “Targeting the miR-221–222/PUMA/BAK/BAX pathway abrogates dexamethasone resistance in multiple myeloma,” Cancer Research, vol. 75, no. 20, pp. 4384–4397, Oct. 2015.
K. W. Chang, S. Y. Kao, Y. H. Wu, M. M. Tsai, H. F. Tu, C. J. Liu, et al., “Passenger strand miRNA miR-31* regulates the phenotypes of oral cancer cells by targeting RhoA,” Oral Oncology, vol. 49, no. 1, pp. 27–33, Jan. 2013.
T. Ogawa, M. Enomoto, H. Fujii, Y. Sekiya, K. Yoshizato, K. Ikeda, et al., “MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis,” Gut, vol. 61, no. 11, pp. 1600–1609, Nov. 2012.
S. Yasmeen, S. Kaur, A. H. Mirza, B. Brodin, F. Pociot, and C. J. Kruuse, “miRNA-27a-3p and miRNA-222-3p as novel modulators of phosphodiesterase 3a (PDE3A) in cerebral microvascular endothelial cells,” Molecular Neurobiology, vol. 56, no. 8, pp. 5304–5314, Aug. 2019.
R. Verjans, T. Peters, F. J. Beaumont, R. van Leeuwen, T. van Herwaarden, W. Verhesen, et al., “MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload–induced heart failure,” Hypertension, vol. 71, no. 2, pp. 280–288, Feb. 2018.
S. Yu, Y. Liu, J. Wang, Z. Guo, Q. Zhang, F. Yu, Y. Zhang, K. Huang, Y. Li, E. Song, and X. L. Zheng, “Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 6, pp. 2084–2092, Jun. 2012.
A. Kopacz, D. Kloska, H. J. Forman, A. Jozkowicz, and A. Grochot-Przeczek, “Beyond repression of Nrf2: An update on Keap1,” Free Radical Biology and Medicine, vol. 157, pp. 63–74, Sep. 2020.
C. Thanas, P. G. Ziros, D. V. Chartoumpekis, C. O. Renaud, and G. P. Sykiotis, “The Keap1/Nrf2 signaling pathway in the thyroid—2020 update,” Antioxidants, vol. 9, no. 11, p. 1082, Nov. 2020.
Z. Gong, L. Xue, H. Li, S. Fan, C. A. van Hasselt, D. Li, et al., “Targeting Nrf2 to treat thyroid cancer,” Biomedicine & Pharmacotherapy, vol. 173, p. 116324, Apr. 2024.
N. T. Trinh, “Prognostic factors for persistent or recurrent disease in differentiated thyroid cancer: A systematic review,” PQDT-Global, 2022.
P. G. Ziros, S. D. Manolakou, I. G. Habeos, I. Lilis, D. V. Chartoumpekis, V. Koika, et al., “Nrf2 is commonly activated in papillary thyroid carcinoma, and it controls antioxidant transcriptional responses and viability of cancer cells,” The Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 8, pp. E1422–E1427, Aug. 2013.
J. Jang, J. M. Kim, S. C. Shin, Y. I. Cheon, B. H. Kim, M. Kim, et al., “Diagnosis and evaluation of aggressiveness using circulating plasma miRNAs in papillary thyroid microcarcinoma,” Cancers, vol. 17, no. 13, p. 2079, Jun. 2025.
Copyright (c) 2025 Ibtihal Dakheel Mohammed yonis, Rana Majeed Hameed, Zainab Abdel Rida Abd

This work is licensed under a Creative Commons Attribution 4.0 International License.



