Electrical and Structural Properties of Hg1Ba2Ca2Cu3O8+δ Superconductor Synthesized via Solid-State Reaction at Different Sintering Temperatures

  • Ahmed Majid Safi Department of Physics, College of Education for Pure Science, University of Kirkuk, Iraq
  • Sabah Jalal Fathi Department of Physics, College of Education for Pure Science, University of Kirkuk, Iraq
Keywords: Superconducting, Solid State Reaction, Structural Properties, Thermal Properties, Electrical Properties

Abstract

High-temperature superconducting samples of HgBa2Ca2Cu3O8+δ (Hg-1223) were synthesized via the solid-state reaction method and sintered at 800°C, 825°C, and 850°C to investigate the effect of sintering temperature on structural, microstructural, and superconducting properties. X-ray diffraction (XRD) analysis confirmed the formation of the Hg-1223 phase in all samples, with varying phase purity and lattice parameters. The sample sintered at 800°C showed the presence of secondary phases and incomplete crystallization, while higher temperatures improved crystallinity but introduced minor secondary phases. Scanning electron microscopy (SEM) at 5 μm magnification revealed progressive grain growth, enhanced connectivity, and reduced porosity with increasing sintering temperature, with the 850°C sample exhibiting the most compact and homogeneous microstructure. Electrical resistivity measurements demonstrated superconducting transitions with Tc(onset) ranging from 140.6 K to 149.7 K and Tc(offset) from 120 K to 129 K, with the transition width (ΔTc) narrowing at intermediate temperatures, reflecting improved structural homogeneity and intergranular connectivity. The energy gap values remained approximately constant (~0.026–0.034 eV), confirming the presence of the superconducting phase. Overall, the solid-state reaction method effectively produces Hg-1223 superconductors, with the 850°C sample providing the optimal balance of phase formation, microstructural quality, and superconducting performance, suggesting its suitability for future high-temperature superconducting applications.

References

J. G. Bednorz and K. A. Moller, “Possible high-Tc superconductivity in the Ba-La-Cu-O system,” Rev. Mod. Phys., vol. 60, p. 585, 1988.

H. Mazaki, T. Ishida, and T. Sakuma, “Properties of high-Tc superconductors,” Jpn. J. Appl. Phys., vol. 27, p. 811, 1988.

L. B. Boldyreva, “Phase transitions in solids,” Int. J. Phys., vol. 4, p. 26, 2016.

W. Meissner and R. Ochsenfeld, “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit,” Naturwissenschaften, vol. 21, p. 787, 1933.

A. H. Shaban, L. A. Mohammed, H. S. Hussein, and K. A. Jasim, “Nanostructures in superconductors,” Dig. J. Nanomater. Biostruct., vol. 17, p. 519, 2022.

A. M. Morales Rivera, J. A. Gómez Cuaspud, C. A. Parra Várgas, and M. H. Brijaldo Ramirez, “Superconducting properties of Tl-based compounds,” J. Supercond. Nov. Magn., vol. 29, p. 1163, 2016.

K. A. Jasim, “The effect of cadmium substitution on the superconducting properties of Tl1-xCdxBa2Ca2Cu3O9-δ compound,” J. Supercond. Nov. Magn., vol. 26, no. 3, pp. 549–552, 2013.

S. J. Fathi and K. A. Jasim, “Investigation into structural and electrical characteristics of the Hg.Ag,Ba₂Ca₂Cu₃O₈+δ superconductor,” EURACA, Decree 818559064, France, 2024.

A. Kareiva, J. Barkauskas, and S. Mathur, “Oxygen content and superconducting properties of Hg-based superconductors synthesized by sol–gel method,” J. Phys. Chem. Solids, vol. 61, no. 5, pp. 789–797, 2000.

I. Hamadneh, Y. W. Kuan, L. T. Hui, and R. Abd-Shukor, “Structural and electrical properties of Hg-based superconductors,” Mater. Lett., vol. 60, no. 6, pp. 734–736, 2006, doi: 10.1016/j.matlet.2005.10.002.

B. A. Ahmed et al., “The dependence of the energy density states on the substitution of chemical elements in the Se6Te4-xSbx thin film,” Chalcogenide Lett., vol. 19, no. 4, pp. 301–308, 2022.

B. B. Kadhim et al., “Effect of gamma irradiation on the TlBa2Ca2Cu3O9-δ superconducting properties,” AIP Conf. Proc., vol. 1968, p. 030054, 2018.

K. A. Jasim, R. Abd A. Fadil, K. M. Wadi, and A. H. Shaban, “Superconducting properties of Tl-based compounds,” Korean J. Mater. Res., vol. 33, p. 9, 2023.

A. N. Abdulateef et al., “Calculating the mechanisms of electrical conductivity and energy density of states for Se85Te10Sn5-xInx glasses materials,” J. Green Eng., vol. 10, no. 9, pp. 5487–5503, 2020.

S. H. Aleabi et al., “Effect of weight fraction on thermal and electrical conductivity for unsaturated polyester composite alone and hybrid,” AIP Conf. Proc., vol. 1968, p. 020019, 2018.

A. M. Alwan, D. S. Ahmed, U. N. Saleman, and I. S. Ahmed, “Effect of the peak phase delay on an acousto–optic interaction,” J. Al-Nahrain Univ. Sci., vol. 11, no. 3, pp. 89–97, 2008, doi: 10.22401/jnus.11.3.11.

P. Radaelli et al., “Structure, doping and superconductivity in HgBa2CaCu2O6+δ (Tc ≤ 128 K),” Physica C: Supercond., vol. 216, no. 1–2, pp. 29–35, 1993, doi: 10.1016/0921-4534(93)90630-9.

K. Tokiwa et al., “Low-temperature properties of Hg-based superconductors,” J. Low Temp. Phys., vol. 131, no. 3–4, pp. 637–641, 2003, doi: 10.1023/a:1022992412312.

K. A. Jasim and T. J. Alwan, “Effect of oxygen treatment on the structural and electrical properties of Tl-based superconductors,” J. Supercond. Nov. Magn., vol. 30, no. 12, pp. 3451–3457, 2017.

B. A. Omar, S. J. Fathi, and K. A. Jassim, “Effect of Zn on the structural and electrical properties of high temperature HgBa2Ca2Cu3O8+δ superconductor,” AIP Conf. Proc., vol. 1968, p. 030047, 2018.

K. M. Wadi et al., “The effects of sustainable manufacturing pressure on the structural properties of Pb2Ba2Ca2Cu3O9+σ compound,” J. Green Eng., vol. 10, no. 9, pp. 6052–6062, 2020.

D. Zhang, C. Boffo, and C. D. Dunand, “Superconductivity in advanced compounds,” Nat. Commun., vol. 16, p. 1933, 2025.

K. A. Jasim, S. A. Makki, and A. A. Almohsin, “Comparison study of transition temperature between the superconducting compounds Tl0.9Pb0.1Ba2Ca2Cu3O9, Tl0.9Sb0.1Ba2Ca2Cu3O9-δ and Tl0.9Cr0.1Ba2Ca2Cu3O9-δ,” Phys. Procedia, vol. 55, pp. 336–341, 2014.

L. A. Mohammed et al., “Superconducting properties of Hg-based compounds,” AIP Conf. Proc., vol. 2190, p. 020018, 2019.

S. J. Fathi, “Influence of substitution on structural and electrical properties of BixBa2Ca2Cu3O10+δ superconductor,” in Proc. TMREES25Ma Int. Conf., Casablanca, Morocco, Feb. 2025, J. Phys.: Conf. Ser., IOP Publishing.

K. A. Jasim and L. A. Mohammed, “The partial substitution of copper with nickel oxide on the structural and electrical properties of HgBa2Ca2Cu3xNixO8+δ superconducting compound,” J. Phys.: Conf. Ser., vol. 1003, no. 1, p. 012071, 2018.

S. D. Peacor, R. A. Richardson, J. Burm, C. Uher, and A. B. Kaiser, “Properties of high-Tc superconductors,” Phys. Rev. B, vol. 42, p. 2684, 1990.

J. Kawashima, Y. Yamada, and I. Hirabayashi, “Superconducting properties of Bi-based compounds,” Physica C, vol. 306, p. 114, 1998.

A. W. Watan et al., “Preparation and physical properties of doped CdBa2-xSrxCa2Cu3O8+δ compound,” Energy Procedia, vol. 119, pp. 466–472, 2017.

G. C. Che, Y. K. Du, F. Wu, and Z. X. Zhao, “Superconducting materials and their properties,” Solid State Commun., vol. 89, p. 903, 1994.

R. S. A. Al-Khafaji and K. A. Jasim, “Dependence of the microstructure specifications of earth metal lanthanum La substituted Bi2Ba2CaCu2–XLaXO8+δ on cation vacancies,” AIMS Mater. Sci., vol. 8, no. 4, pp. 550–559, 2021.

A. Jabbar, M. Mumtaz, and K. Nadeem, “Superconductivity in Bi-based compounds,” Eur. Phys. J. Appl. Phys., vol. 69, p. 30601, 2015.

L. Ganapathi, A. Kumar, and J. Narayan, “Superconducting thin films,” Physica C, vol. 167, p. 669, 1990.

I. Hamadeh, Y. W. Kuan, L. T. Hui, and R. Abd-Shukor, “Superconductivity in Hg-based materials,” Mater. Lett., vol. 60, p. 734, 2006.

W. Tian, H. M. Shao, J. S. Zhu, and Y. N. Wang, “Properties of Bi-based superconductors,” Phys. Status Solidi A, vol. 203, no. 11, 2006, doi: 10.1002/pssa.v203:11.

M. Collins, “Research: An introduction to principles, methods and practice,” Eval. Program Plann., vol. 23, no. 4, pp. 472–473, 2000, doi: 10.1016/s0149-7189(00)00038-0.

A. Biju et al., “Structural and transport properties of Nd-doped (Bi,Pb)-2212,” Physica C: Supercond., vol. 466, no. 1–2, pp. 69–75, 2007, doi: 10.1016/j.physc.2007.06.013.

Published
2025-08-22
How to Cite
Safi, A. M., & Fathi, S. J. (2025). Electrical and Structural Properties of Hg1Ba2Ca2Cu3O8+δ Superconductor Synthesized via Solid-State Reaction at Different Sintering Temperatures. Central Asian Journal of Medical and Natural Science, 6(4), 2006-2015. https://doi.org/10.17605/cajmns.v6i4.2924
Section
Articles