Influence of Synthesis Parameters on the Structural and Superconducting Characteristics of Bi₂Sr₂Ca₃Cu₄O₁₀₊δ High-Temperature Superconductors

  • Fatima Ali Hussein Department of Physics, College of Education for Pure Sciences, University of Kirkuk, Kirkuk, Iraq
  • Sabah Jalal Fathi Department of Physics, College of Education for Pure Sciences, University of Kirkuk, Kirkuk, Iraq
Keywords: High-Tc Superconductivity, Bi-2234 phase Evolution, Thermal Annealing Optimization, Solid-State Synthesis Route, Crystallographic Phase Transformation, SEM, AFM, XRD

Abstract

This study investigates the influence of annealing temperature on the structural and superconducting characteristics of Bi₂Sr₂Ca₃Cu₄O₁₀₊δ high-temperature superconductors synthesized using the solid-state reaction method. Samples were annealed at 650°C, 750°C, and 850°C in an oxygen-rich atmosphere to control phase formation, crystal structure, and superconducting behavior. X-ray diffraction (XRD) analysis confirmed a progressive transformation from low-CuO₂-layer phases to the Bi-2234 phase, with an optimal c/a ratio and crystallite size observed at 850°C. Electrical measurements showed enhanced superconductivity at 850°C, with a sharp transition temperature (T_c(on) = 115.8 K) and narrow ΔT_c, indicating high phase purity. SEM and AFM analyses revealed improved grain connectivity, reduced surface roughness, and enhanced structural uniformity at elevated temperatures. The results confirm that 850°C is the optimal annealing temperature for achieving superior structural integrity and superconducting performance in Bi-2234 compounds.

References

C. P. Poole, H. A. Farach, R. J. Creswick, and R. Prozorov, Superconductivity. Elsevier, 2014.

K. Onnes, “The resistance of pure mercury at helium temperatures,” Commun. Phys. Lab. Univ. Leiden, b, vol. 120, 1911.

T. H. Glisson, Introduction to circuit analysis and design. Springer Science & Business Media, 2011.

K. A. Jasim, C. A. Z. Saleh, and A. H. A. Jassim, “Synthesis and Analysis of the Impact of Partial Mercury Replacement with Lead on the Structural and Electrical Properties of the Hg1-xPbxBa2Ca2Cu3O8+ δ Superconductor,” Korean J. Mater. Res., vol. 34, no. 1, pp. 21–26, 2024.

B. Metin, N. Kavasoglu, and A. S. Kavasoglu, “AFORS-HET simulation for investigating the performance of ZnO/n-CdS/p-CdTe/Ag solar cell depending on CdTe acceptor concentration and temperature,” Phys. B Condens. Matter, vol. 649, p. 414504, 2023.

F. A. Karbarz et al., “Synthesis of 85 K Bi Sr Ca Cu O superconductor,” Mater. Res. Bull., vol. 25, no. 2, pp. 251–256, 1990.

215–224. [38] Abbas, M. M., Abass, L. K., & Salman, U. (2012). Influences of sintering time on the TC of Bi₂₋ₓCuₓPb₀.₃Sr₂Ca₂Cu₃O₁₀₊ high temperature superconductors. Energy Procedia, 18, “Influences of sintering time on the Tc of Bi2-xCuxPb0. 3Sr2Ca2Cu3O10+ δ high temperature superconductors,” Energy Procedia, vol. 18, pp. 215–224, 2012.

A. R. Abdulridha, E. Al-Bermany, F. S. Hashim, and A. H. O. Alkhayatt, “Synthesis and characterization and pelletization pressure effect on the properties of Bi1. 7Pb0. 3Sr2W0. 2 Ca2Cu3 O10+ δ superconductor system,” Intermetallics, vol. 127, p. 106967, 2020.

K. A. Jasim, R. A. A.-Z. Fadil, K. M. Wadi, and A. H. Shaban, “Partial Substitution of Copper with Nickel for the Superconducting Bismuth Compound and Its Effect on the Physical and Electrical Properties,” Korean J. Mater. Res., vol. 33, no. 9, pp. 360–366, 2023.

M. Tinkham, Introduction to superconductivity. Courier Corporation, 2004.

B. A. Omar, N. S. Abed, and A. S. Baqi, “Effects of La2O3 Nanoparticles on the Superconducting Behavior of Bi1. 60 Ag0. 40 Sr1. 9 Ba0. 1 Ca2 Cu3 O10+ δ Ceramics,” Sci. Technol. Sci. Soc., vol. 2, no. 6, pp. 75–82, 2025.

D. A. Cardwell, D. C. Larbalestier, and A. Braginski, Handbook of Superconductivity: Characterization and Applications, Volume Three. CRC Press, 2022.

O. F. de Lima, “THE RESEARCH ON SUPERCONDUCTIVITY IN BRAZIL,” Festschrift Honor Rogerio Cerqueira Leite, p. 308, 1991.

A. Sergeev and I. Golev, “High-Temperature Superconducting Materials Based on Bismuth with a Low Critical Current,” Mater. Today Proc., vol. 11, pp. 489–493, 2019.

S. S. A. Alimardan, A. K. D. Ali, and S. J. Fathi, “Partial substitution Effect of Pb and Mg on the Structural and Electrical Properties of High Temperature (Hg1-xPbxBa2Ca3-yMgyCu4O10+ δ) Superconductor,” Tikrit J. Pure Sci., vol. 24, no. 2, pp. 68–87, 2019.

Published
2025-08-03
How to Cite
Hussein, F. A., & Fathi, S. J. (2025). Influence of Synthesis Parameters on the Structural and Superconducting Characteristics of Bi₂Sr₂Ca₃Cu₄O₁₀₊δ High-Temperature Superconductors. Central Asian Journal of Medical and Natural Science, 6(4), 1740-1749. https://doi.org/10.17605/cajmns.v6i4.2890
Section
Articles