Identification and Antibiotic Sensitivity of Staphylococcus aureus Isolated from Burned-Wounded Patients
Abstract
Burns are the leading cause of death globally and the most severe type of trauma. resistant to methicillin One of the most prevalent bacteria associated with burn wound infections is Staphylococcus aureus (MRSA); nevertheless, antibiotic resistance in these strains has complicated therapy. Biofilm generation, a virulence factor that enhances antibiotic resistance, is the cause of treatment failure and recurrent staphylococcal infections in burn patients. In the current research, 50 samples were collected from burn and wound patients hospitalized to various hospitals in Erbil city. Thirty S. aureus isolates were identified using culture, morphological characteristics, biochemical tests, and Vitek's two compact methods. S. aureus generated yellow pigments on mannitol salt agar. S. aureus isolates were treated with several distinct antibiotics. the majority of isolates shown strong resistance to Ampicillin 100%, Ceftazidime 100%, Cefotaxime 100%, and Amikacin 6.6%. All S. aureus isolates were examined for biofilm production, and 71% of them produced robust biofilms. Impenem was the most efficacious antimicrobial drug against all S. aureus isolates.
References
G. Li, M. J. Walker, and D. M. De Oliveira, “Vancomycin resistance in Enterococcus and Staphylococcus aureus,” Microorganisms, vol. 11, no. 1, p. 24, Dec. 2022. DOI: 10.3390/microorganisms11010024.
C. Pérez, T. Zúñiga, and C. E. Palavecino, “Photodynamic therapy for treatment of Staphylococcus aureus infections,” Photodiagnosis Photodyn. Ther., vol. 34, p. 102285, Jun. 2021. DOI: 10.1016/j.pdpdt.2021.102285.
A. Marco-Fuertes, C. Marin, C. Gimeno-Cardona, V. Artal-Muñoz, S. Vega, and L. Montoro-Dasi, “Multidrug-resistant commensal and infection-causing Staphylococcus spp. isolated from companion animals in the Valencia region,” Vet. Sci., vol. 11, no. 2, p. 54, Jan. 2024. DOI: 10.3390/vetsci11020054.
S. Samir, A. El-Far, H. Okasha, R. Mahdy, F. Samir, and S. Nasr, “Isolation and characterization of lytic bacteriophages from sewage at an Egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates,” Saudi J. Biol. Sci., vol. 29, no. 5, pp. 3097–3106, May 2022. DOI: 10.1016/j.sjbs.2022.03.019.
F. de Lucca Melo, A. Gragnani, A. F. de Oliveira, and L. M. Ferreira, “Predicting mortality for critically ill burns patients, using the Abbreviated Burn Severity Index and Simplified Acute Physiology Score 3,” Injury, vol. 53, no. 2, pp. 453–456, Feb. 2022. DOI: 10.1016/j.injury.2021.11.027.
S. Kumar, R. P. Mahato, C. S., and S. Kumbham, “Current strategies against multidrug-resistant Staphylococcus aureus and advances toward future therapy,” The Microbe, p. 100281, Feb. 2025. DOI: 10.1016/j.microb.2025.100281.
B. B. Silva, M. Silva Júnior, F. G. Menezes, and E. J. Troster, “Factors associated with multidrug-resistant bacteria in healthcare-associated infections: A pediatric intensive care unit case-control study,” Einstein (Sao Paulo), vol. 20, eAO6704, Apr. 2022. DOI: 10.31744/einstein_journal/2022AO6704.
C. Wang, H. Lu, X. Li, Y. Zhu, Y. Ji, W. Lu, G. Wang, W. Dong, M. Liu, X. Wang, and H. Chen, “Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria,” Biomed. Pharmacother., vol. 153, p. 113334, Sep. 2022. DOI: 10.1016/j.biopha.2022.113334.
E. Hernández-Cuellar, K. Tsuchiya, R. Valle-Ríos, and O. Medina-Contreras, “Differences in biofilm formation by methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains,” Diseases, vol. 11, no. 4, p. 160, Nov. 2023. DOI: 10.3390/diseases11040160.
A. Alsolami, N. S. ALGhasab, M. S. Alharbi, A. I. Bashir, M. Saleem, A. S. Syed Khaja, D. F. Aldakheel, E. Rakha, J. A. Alshammari, T. E. Taha, Z. Melibari, “Community-acquired methicillin-resistant Staphylococcus aureus in hospitals: Age-specificity and potential zoonotic–zooanthroponotic transmission dynamics,” Diagnostics, vol. 13, no. 12, p. 2089, Jun. 2023. DOI: 10.3390/diagnostics13122089.
M. M. Severn and A. R. Horswill, “Staphylococcus epidermidis and its dual lifestyle in skin health and infection,” Nat. Rev. Microbiol., vol. 21, no. 2, pp. 97–111, Feb. 2023. DOI: 10.1038/s41579-022-00780-3.
A. Valliammai, A. Selvaraj, U. Yuvashree, C. Aravindraja, and S. Karutha Pandian, “sarA-dependent antibiofilm activity of thymol enhances the antibacterial efficacy of rifampicin against Staphylococcus aureus,” Front. Microbiol., vol. 11, p. 1744, Jul. 2020. DOI: 10.3389/fmicb.2020.01744.
M. Bhattacharya and A. R. Horswill, “The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections,” FEMS Microbiol. Rev., vol. 48, no. 1, p. fuae002, Jan. 2024. DOI: 10.1093/femsre/fuae002.
E. K. Perry and M. W. Tan, “Bacterial biofilms in the human body: Prevalence and impacts on health and disease,” Front. Cell. Infect. Microbiol., vol. 13, p. 1237164, Aug. 2023. DOI: 10.3389/fcimb.2023.1237164.
M. Cheesbrough, Laboratory Practice in Tropical Countries, vol. 1, UK: Part, 2006, pp. 228–230.
M. D. Younus, A. Z. Fage Ahmed Abdulrahman, F. O. Bahjat, N. L. Lutphy Ali, S. A. Rashid, A. S. Alkhouri, “Plasmid profiling, genetic site determination of antibiotic resistance gene of Pseudomonas aeruginosa isolated from burned patients,” [Online]. Available: http://doi.org/10.24086/biohs2022/paper.538.
L. J. Wang, X. Yang, S. Y. Qian, Y. C. Liu, K. H. Yao, F. Dong, W. Q. Song, “Identification of hemolytic activity and hemolytic genes of methicillin-resistant Staphylococcus aureus isolated from Chinese children,” Chinese Med. J., vol. 133, no. 1, pp. 88–90, Jan. 2020. DOI: 10.1097/CM9.0000000000000571.
H. Zhang, J. Cao, Z. He, X. Zong, and B. Sun, “Molecular epidemiology of Staphylococcus aureus in a tertiary hospital in Anhui, China: ST59 remains a serious threat,” Infect. Drug Resist., vol. 2023, pp. 961–976, Dec. 2023. DOI: 10.2147/IDR.S395220.
W. Gitau, M. Masika, M. Musyoki, B. Museve, and T. Mutwiri, “Antimicrobial susceptibility pattern of Staphylococcus aureus isolates from clinical specimens at Kenyatta National Hospital,” BMC Res. Notes, vol. 11, p. 1–5, Dec. 2018. DOI: 10.1186/s13104-018-3337-2.
A. K. Onifade, C. O. Afolayan, and O. I. Afolami, “Antimicrobial sensitivity, extended spectrum beta-lactamase (ESBL) production and plasmid profile by microorganisms from otitis media patients in Owo and Akure, Ondo State, Nigeria,” Karbala Int. J. Mod. Sci., vol. 4, no. 3, pp. 332–340, Sep. 2018. DOI: 10.1016/j.kijoms.2018.07.001.
A. H. Rasmi, E. F. Ahmed, A. M. Darwish, and G. F. Gad, “Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance,” BMC Infect. Dis., vol. 22, p. 652, Jul. 2022. DOI: 10.1186/s12879-022-07624-8.
G. Ghimire, R. P. Chaudhary, and B. Lekhak, “Bacteriological profile and antibiotic susceptibility pattern of isolates of wound infection in children visiting Kanti Children Hospital,” Tribhuvan Univ. J. Microbiol., vol. 7, pp. 123–132, Dec. 2020. DOI: 10.3126/tujm.v7i0.33855.
B. Maharjan, S. T. Karki, and R. Maharjan, “Antibiotic susceptibility pattern of Staphylococcus aureus isolated from pus/wound swab from children attending International Friendship Children’s Hospital,” Nepal J. Biotechnol., vol. 9, no. 1, pp. 8–17, Jul. 2021. DOI: 10.3126/njb.v9i1.38645.
H. Mahmoudi, M. Pourhajibagher, N. Chiniforush, A. R. Soltanian, M. Y. Alikhani, and A. Bahador, “Biofilm formation and antibiotic resistance in methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolated from burns,” J. Wound Care, vol. 28, no. 2, pp. 66–73, Feb. 2019. DOI: 10.12968/jowc.2019.28.2.66.
S. M. Shehade, A. S. Juma, M. H. Ubeid, and M. D. Younus, “Perceptions and mindset toward infection control and prevention among medical microbiology students,” Cihan Univ.-Erbil Sci. J., vol. 9, no. 1, pp. 24–28, Jan. 2025. DOI: 10.24086/cuesj.v9n1y2025.pp24-28.
S. A. Rashid, S. M. Sorchee, M. D. Yonus, and O. F. Bahjat, “Identification of biofilm producers in Staphylococcus aureus isolates and detection of their biofilm genes from gingivitis cases,” 4th Int. Conf. Health Biol. Sci., 2022. [Online]. Available: http://doi.org/10.24086/biohs2022/paper.586.
J. Hemmati, M. Chiani, B. Asghari, G. Roshanaei, S. S. Soleimani Asl, M. Shafiei, and M. R. Arabestani, “Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections,” BMC Biotechnol., vol. 24, p. 47, Jul. 2024. DOI: 10.1186/s12896-024-00874-1.
A. R. Al-Khamis, J. M. Abed, H. K. Sameer, and M. A. Hassan, “Biofilm formation and antibiotic resistance of Staphylococcus aureus isolates,” Academia Open, vol. 10, no. 1, pp. 10–21070, Apr. 2025. DOI: 10.1186/s13104-018-3337-2.
A. R. Hiawy and J. H. Mukharmish, “Molecular study to detect the prevalence of biofilm genes and the effect of probiotics on Staphylococcus aureus isolates in Al-Kut city, Iraq,” 2019, pp. 1141–1148.
S. S. Jaafar and H. K. Shareef, “Relationship between Staphylococcus aureus biofilm formation and antibiotic resistance isolated from infections of the urinary tract in Babylon Province, Iraq,” Med. J. Babylon, vol. 22, no. 1, pp. 123–128, Jan. 2025. DOI: 10.4103/MJBL.MJBL_593_23.
P. A. Hamad, “Phenotypic and molecular detection of biofilm formation in methicillin-resistant Staphylococcus aureus isolated from different clinical sources in Erbil city,” Mediterr. J. Hematol. Infect. Dis., vol. 15, no. 1, p. e2023016, Mar. 2023. DOI: 10.4084/MJHID.2023.016.
Copyright (c) 2025 Mustafa D Younus, Yahya Abbas Qasim, Ali Qasim Taha Muhammad, Maad Abdullah Mansur, Mohammed H Khalaf

This work is licensed under a Creative Commons Attribution 4.0 International License.