Systematic Analysis of Rosa L. Genus and Some of its Species Based on Morphological Traits and DNA Markers
Abstract
This study presents a systematic analysis of the Rosa L. genus and selected species based on morphological characteristics and DNA markers. Species such as Rosa kokanica, Rosa canina, Rosa ecae, Rosa fedtschenkoana.were examined in detail through the assessment of diagnostic morphological traits, including leaf shape, flower structure, fruit morphology, and prickles. In addition to morphological evaluation, molecular phylogenetic analysis was conducted using DNA markers, particularly the Internal Transcribed Spacer (ITS) region and chloroplast DNA (cpDNA) sequences. The results revealed genetic relationships and phylogenetic affiliations among the studied species, contributing to a clearer understanding of their systematic placement within the genus. The integration of morphological and molecular data provided deeper insights into the taxonomy of Rosa species, clarifying certain ambiguities in traditional classifications. These findings are valuable for the advancement of modern botanical systematics, conservation strategies, and the effective management of genetic resources within the Rosa genus.
References
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
Bruneau, A., Starr, J. R., & Joly, S. (2007). Phylogenetic relationships in the genus Rosa: new evidence from chloroplast DNA sequences and an appraisal of current knowledge. Systematic Botany, 32(2), 366-378.
Debray, K., Le Paslier, M. C., Bérard, A., Thouroude, T., Michel, G., Marie-Magdelaine, J., ... & Malécot, V. (2022). Unveiling the patterns of reticulated evolutionary processes with phylogenomics: hybridization and polyploidy in the genus Rosa. Systematic Biology, 71(3), 547-569.
Fougère-Danezan, M., Joly, S., Bruneau, A., Gao, X. F., & Zhang, L. B. (2015). Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals of Botany, 115(2), 275-291.
Gao, C., Li, T., Zhao, X., Wu, C., Zhang, Q., Zhao, X., ... & Li, Z. (2023). Comparative analysis of the chloroplast genomes of Rosa species and RNA editing analysis. BMC Plant Biology, 23(1), 318.
Gao, W., Zhou, X., Yu, Q., Lin, G., Fu, C., Kang, T., & Zeng, H. (2024). Assembly and comparative analyses of the Chloroplast genomes of the threatened plant Rosa Anemoniflora. Forests, 15(6), 940.
Greiner, S., Lehwark, P., & Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic acids research, 47(W1), W59-W64.
Jeon, J. H., Maki, M., Chiang, Y. C., & Kim, S. C. (2024). Inferring complex evolutionary history of the closely related East Asian wild roses in Rosa sect. Synstylae (Rosaceae) based on genomic evidence from conserved orthologues. Annals of Botany, mcae170.
Jeon, J.H., & Kim, S.C. (2019). Comparative Analysis of the Complete Chloroplast Genome Sequences of Three Closely Related East-Asian Wild Roses (Rosa sect. Synstylae; Rosaceae). Genes, 10(1), 23.
Jian, H., Zhao, L., Zhang, H., Ma, C., Wang, Q., Yan, H., ... & Zhang, T. (2022). Phylogeography and Population Genetics of Rosa chinensis var. s pontanea and R. lucidissima Complex, the Important Ancestor of Modern Roses. Frontiers in Plant Science, 13, 851396.
Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., DePamphilis, C. W., Yi, T. S., & Li, D. Z. (2020). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome biology, 21, 1-31.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30(4), 772-780.
Qi, W., Chen, X., Fang, P., Shi, S., Li, J., Liu, X., ... & Zhang, Z. (2018). Genomic and transcriptomic sequencing of Rosa hybrida provides micRosatellite markers for breeding, flower trait improvement and taxonomy studies. BMC Plant Biology, 18, 1-11.
Vozárová, R., Herklotz, V., & Kovařík, A. (2021). Ancient Origin of Two 5S rDNA Families Dominating in the Genus Rosa and Their Behavior in the Canina-Type Meiosis. Frontiers in Plant Science, 12, 643548.
Yan, H., Liu, Y., Wu, Z., Yi, Y., & Huang, X. (2021). Phylogenetic relationships and characterization of the complete chloroplast genome of Rosa sterilis. Mitochondrial DNA Part B, 6(4), 1544-1546.
Zhang, C., Li, S. Q., Xie, H. H., Liu, J. Q., & Gao, X. F. (2022). Comparative plastid genome analyses of Rosa: Insights into the phylogeny and gene divergence. Tree Genetics & Genomes, 18(3), 20.
Copyright (c) 2025 G. Ismonova

This work is licensed under a Creative Commons Attribution 4.0 International License.