A Comparative Study Between Magnesium Ferrite (Mgfe₂O₄) and Cobalt Ferrite (Cofe₂O₄) in Terms of Optical Properties

  • Ahmed A. Ahmed Department of Physics, College of Education, University, Kirkuk, Iraq
  • Abdullah H. Mohammed Department of Physics, College of Education, University, Kirkuk, Iraq
Keywords: Magnesium Ferrite, Cobalt Ferrite, Optical Properties, Properties of Magnesium, Sensors

Abstract

This investigation provides a comparative examination of the optical characteristics of magnesium ferrite (MgFe₂O₄) and cobalt ferrite (CoFe₂O₄), which are two significant spinel ferrites utilized in various applications, including photocatalysis, sensing technologies, and energy-related devices. A range of optical attributes, including the absorption coefficient, refractive index, dielectric function, electrical conductivity, and loss function, were systematically analyzed and contrasted. The findings indicated that both materials exhibit pronounced absorption in the low-energy spectrum, with MgFe₂O₄ demonstrating robust absorption in the high-energy range (40-60 eV), whereas CoFe₂O₄ revealed considerable absorption in the intermediate energy range (10-30 eV). Additionally, CoFe₂O₄ displayed a dielectric response characterized by sharper peaks, suggesting more localized electronic transitions. Moreover, notable distinctions in conductivity and loss function were identified between the two materials. This research substantiates the critical role of chemical composition and crystalline structure in influencing the optical properties of these compounds, thereby enriching the comprehension of their applicability in optical and sensing domains.

References

P. C. R. Varma, R. S. Manna, D. Banerjee, M. R. Varma, K. G. Suresh, and A. K. Nigam, “Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study,” J. Alloys Compd., vol. 453, no. 1–2, pp. 298–303, 2008.

A. Hossain, M. S. I. Sarker, M. K. R. Khan, F. A. Khan, M. Kamruzzaman, and M. M. Rahman, “Structural, magnetic, and electrical properties of sol–gel derived cobalt ferrite nanoparticles,” Appl. Phys. A, vol. 124, pp. 1–7, 2018.

A. Lisfi and C. M. Williams, “Magnetic anisotropy and domain structure in epitaxial CoFe2O4 thin films,” J. Appl. Phys., vol. 93, no. 10, pp. 8143–8145, 2003.

C. N. Chinnasamy et al., “Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe 2 O 4 nanoparticles,” Appl. Phys. Lett., vol. 83, no. 14, pp. 2862–2864, 2003.

H. Zheng et al., “Multiferroic batio3-cofe2o4 nanostructures,” Science (80-. )., vol. 303, no. 5658, pp. 661–663, 2004.

R. V Chopdekar and Y. Suzuki, “Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3,” Appl. Phys. Lett., vol. 89, no. 18, 2006.

H. Zheng et al., “Self‐assembled growth of BiFeO3–CoFe2O4 nanostructures,” Adv. Mater., vol. 18, no. 20, pp. 2747–2752, 2006.

I. H. Gul, A. Z. Abbasi, F. Amin, M. Anis-ur-Rehman, and A. Maqsood, “Structural, magnetic and electrical properties of Co1− xZnxFe2O4 synthesized by co-precipitation method,” J. Magn. Magn. Mater., vol. 311, no. 2, pp. 494–499, 2007.

M. H. A. Albayati and S. M. A. Ridha, “A study on the dielectric properties of La doped nickel ferrite”.

W. Fan et al., “Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis,” Langmuir, vol. 32, no. 6, pp. 1629–1636, 2016.

M. Bagheri, M. A. Bahrevar, and A. Beitollahi, “Synthesis of mesoporous magnesium ferrite (MgFe2O4) using porous silica templates,” Ceram. Int., vol. 41, no. 9, pp. 11618–11624, 2015.

Y. Yin et al., “Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries,” Scr. Mater., vol. 110, pp. 92–95, 2016.

R. V Godbole, P. Rao, P. S. Alegaonkar, and S. Bhagwat, “Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticles,” Mater. Chem. Phys., vol. 161, pp. 135–141, 2015.

K. Tezuka, M. Kogure, and Y. J. Shan, “Photocatalytic degradation of acetic acid on spinel ferrites MFe2O4 (M= Mg, Zn, and Cd),” Catal. Commun., vol. 48, pp. 11–14, 2014.

V. Srivastava, Y. C. Sharma, and M. Sillanpää, “Application of nano-magnesso ferrite (n-MgFe2O4) for the removal of Co2+ ions from synthetic wastewater: kinetic, equilibrium and thermodynamic studies,” Appl. Surf. Sci., vol. 338, pp. 42–54, 2015.

M. Tada, T. Kanemaru, T. Hara, T. Nakagawa, H. Handa, and M. Abe, “Synthesis of hollow ferrite nanospheres for biomedical applications,” J. Magn. Magn. Mater., vol. 321, no. 10, pp. 1414–1416, 2009.

J. Yao, Y. Li, X. Li, and X. Zhu, “First-principles study of the geometric and electronic structures of zinc ferrite with vacancy defect,” Metall. Mater. Trans. A, vol. 47, pp. 3753–3760, 2016.

S. Maensiri, M. Sangmanee, and A. Wiengmoon, “Magnesium ferrite (MgFe 2 O 4) nanostructures fabricated by electrospinning,” Nanoscale Res. Lett., vol. 4, pp. 221–228, 2009.

H. H. Kora, M. Taha, A. Abdelwahab, A. A. Farghali, and S. I. El-Dek, “Effect of pressure on the geometric, electronic structure, elastic, and optical properties of the normal spinel MgFe2O4: a first-principles study,” Mater. Res. Express, vol. 7, no. 10, p. 106101, 2020.

H. Guo et al., “Essential role of spinel MgFe2O4 surfaces during discharge,” J. Electrochem. Soc., vol. 167, no. 9, p. 90506, 2020.

I. Z. A. Hassan and S. M. Nayif, “Computational Study of the Effect of Adsorbed Lithium on Solid State Hydrogen Storage Capacity of Pristine and Boron Doped Graphene,” Kirkuk J. Sci., vol. 15, no. 4, 2020.

S. Chikazumi and C. D. Graham, Physics of ferromagnetism, no. 94. Oxford university press, 1997.

N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials. OUP Oxford, 2012.

H. M. Ahmed and M. J. Ali, “Effect of V 2 O 5 – MgO Addition on Some Structural and Physical Properties of Na 2 B 4 O 7,” vol. 21, no. 1, pp. 75–78, 2025.

N. Thomas, P. V Jithin, V. D. Sudheesh, and V. Sebastian, “Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method,” Ceram. Int., vol. 43, no. 9, pp. 7305–7310, 2017, doi: https://doi.org/10.1016/j.ceramint.2017.03.031.

S. Akhtar, A. Hussain, S. Noreen, N. Bibi, M. Bilal Tahir, and J. Ur Rehman, “A comparative DFT study of MgFe2O4 and MnFe2O4 spinel ferrites at various pressures to investigate the structural, mechanical, electronic, magnetic and optical properties for multifunctional applications,” Comput. Theor. Chem., vol. 1235, p. 114546, 2024, doi: https://doi.org/10.1016/j.comptc.2024.114546.

T. Rui, Y. Lan, C. Li, H. Zhang, and X. Liu, “First principle investigation of Cr doping effect on the stability of NiFe2O4,” AIP Adv., vol. 15, no. 1, 2025.

S. Caliskan, M. A. Almessiere, A. Baykal, and Y. Slimani, “A first principles study on electronic structure, magnetic and optical characteristics of Se doped CoNiFe2O4 spinel ferrites,” Comput. Mater. Sci., vol. 226, p. 112243, 2023.

K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, “Pseudopotentials for high-throughput DFT calculations,” Comput. Mater. Sci., vol. 81, pp. 446–452, 2014.

Y. Didi et al., “Computational insights into spin-polarized density functional theory applied to actinide-based perovskites XBkO₃ (X= Sr, Ra, Pb),” Sci. Rep., vol. 15, no. 1, p. 87, 2025.

C. A. P. Liberato, S. R. Jáuregui-Rosas, and A. V Gil Rebaza, “Structural and Magnetic Ground State of the Spinel CoFe2O4: A Density Functional Theory Study,” J. Supercond. Nov. Magn., pp. 1–7, 2024.

Q. Luan, C.-L. Yang, M.-S. Wang, and X.-G. Ma, “First-principles study on the electronic and optical properties of WS2 and MoS2 monolayers,” Chinese J. Phys., vol. 55, no. 5, pp. 1930–1937, 2017.

Published
2025-06-23
How to Cite
Ahmed, A. A., & Mohammed, A. H. (2025). A Comparative Study Between Magnesium Ferrite (Mgfe₂O₄) and Cobalt Ferrite (Cofe₂O₄) in Terms of Optical Properties. Central Asian Journal of Medical and Natural Science, 6(3), 1339-1349. https://doi.org/10.17605/cajmns.v6i3.2843
Section
Articles