Распространенность Электрокардиографических Предикторов Внезапной Смерти У Здоровых Мужчин Призывного Возраста
Abstract
Цель исследования: определить частоту встречаемости ЭКГ предикторов внезапной смерти у мужчин призывного возраста без клинических проявлений кардиоваскулярной патологии
Материал и методы исследования. В ходе исследования были проанализированы электрокардиограммы (ЭКГ), зарегистрированные в 12 стандартных отведениях у 782 мужчин 18-27 лет без клинико-анамнестических признаков сердечно-сосудистой патологии в ходе первичного скрининга. Анализ ЭКГ включал регистрацию предполагаемых предикторов ВСС. Статистическая обработка включала частотный анализ встречаемости различных предикторов, их корреляцию с возрастом и ассоциацию с другими предикторами.
Результаты исследования
Среди всех проанализированных ЭКГ предикторы ВСС были обнаружены в 302 случая (38,62%). Наиболее часто встречался ПРРЖ (26,98%), причем «злокачественный вариант» ПРРЖ – с вовлечением нижних отведений и горизонтальное расположение ST после точки J в 98 случаях (12,53%). В 11,13% встречалась паттерн «широкого» пространственного угла между векторами QRS и Т. Остальные предикторы встречались менее, чем в 10 % случаях. Распределение ЭКГ на 2-х летние возрастные группы показало, что все исследуемые предикторы риска ВСС встречались с одинаковой частотой во всех возрастных группах, кроме ПРРЖ. Этот паттерн достоверно чаще встречался в более молодой группе и его частота достоверно (p<0,001) уменьшалась с увеличением возраста обследуемых мужчин.
Вывод. У мужчин 18-27 лет без клинико-анамнестических признаков сердечно-сосудистой патологии скрининговая ЭКГ в 38,62% случаев обнаруживает различные предикторы ВСС и их комбинации. Однако, учитывая низкую частоту ВСС в этой когорте (молодые лица без органической патологии сердца), предикторная значимость описанных находок требует дополнительного изучения.
References
2. Writing Group Members , Mozaffarian D Benjamin EJ. et al. American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: a report from the American Heart Association. Circulation. 2016. January 26; 133 4: e38- e60. doi: 10.1161/CIR.0000000000000350. [PubMed] [Google Scholar]
3. Priori SG, Wilde AA, Horie M, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013. December; 10 12: e85- e108. doi: 10.1016/j.hrthm.2013.07.021. [PubMed] [Google Scholar]
4. Pohjola-Sintonen S, Siltanen P, Haapakoski J. Usefulness of QTc interval on the discharge electrocardiogram for predicting survival after acute myocardial infarction. Am J Cardiol. 1986. May 1; 57 13: 1066- 1068. [PubMed] [Google Scholar]
5. Zabel M, Klingenheben T, Franz MR, Hohnloser SH. Assessment of QT dispersion for prediction of mortality or arrhythmic events after myocardial infarction: results of a prospective, long-term follow-up study. Circulation. 1998. June 30; 97 25: 2543- 2550. [PubMed] [Google Scholar]
6. Zareba W, Moss AJ, le Cessie S. Dispersion of ventricular repolarization and arrhythmic cardiac death in coronary artery disease. Am J Cardiol. 1994. September 15; 74 6: 550- 553. [PubMed] [Google Scholar]
7. Hathaway WR, Peterson ED, Wagner GS, et al. Prognostic significance of the initial electrocardiogram in patients with acute myocardial infarction. GUSTO-I Investigators. Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries. JAMA. 1998. February 4; 279 5: 387- 391. [PubMed] [Google Scholar]
8. Petrina M, Goodman SG, Eagle KA. The 12-lead electrocardiogram as a predictive tool of mortality after acute myocardial infarction: current status in an era of revascularization and reperfusion. Am Heart J. 2006. July; 152 1: 11- 18. [PubMed] [Google Scholar]
9. Morin DP, Oikarinen L, Viitasalo M, et al. QRS duration predicts sudden cardiac death in hypertensive patients undergoing intensive medical therapy: the LIFE study. Eur Heart J. 2009. December; 30 23: 2908- 2914. doi: 10.1093/eurheartj/ehp321. [PubMed] [Google Scholar]
10. Zimetbaum PJ, Buxton AE, Batsford W, et al. Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation. 2004. August 17; 110 7: 766- 769. [PubMed] [Google Scholar]
11. Buxton AE, Sweeney MO, Wathen MS, et al. QRS duration does not predict occurrence of ventricular tachyarrhythmias in patients with implanted cardioverter-defibrillators. J Am Coll Cardiol. 2005. July 19; 46 2: 310- 316. [PubMed] [Google Scholar]
12. Das MK, Saha C, El Masry H, et al. Fragmented QRS on a 12-lead ECG: a predictor of mortality and cardiac events in patients with coronary artery disease. Heart Rhythm. 2007. November; 4 11: 1385- 1392. [PubMed] [Google Scholar]
13. Strauss DG, Selvester RH, Lima JA, et al. ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis. Circ Arrhythm Electrophysiol. 2008. December; 1 5: 327- 336. doi: 10.1161/CIRCEP.108.798660. [PMC free article] [PubMed] [Google Scholar]
14. Strauss DG, Poole JE, Wagner GS, et al. An ECG index of myocardial scar enhances prediction of defibrillator shocks: an analysis of the Sudden Cardiac Death in Heart Failure Trial. Heart Rhythm. 2011. January; 8 1: 38- 45. doi: 10.1016/j.hrthm.2010.09.071. [PMC free article] [PubMed] [Google Scholar]
15. Jain R., Singh R., Yamini S., Das M. K. Fragmented ECG as a risk marker in cardiovascular diseases. Current Cardiology Reviews. 2014;10(3):277–286. doi: 10.2174/1573403x10666140514103451. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Torigoe K., Tamura A., Kawano Y., Shinozaki K., Kotoku M., Kadota J. The number of leads with fragmented QRS is independently associated with cardiac death or hospitalization for heart failure in patients with prior myocardial infarction. Journal of Cardiology. 2012;59(1):36–41. doi: 10.1016/j.jjcc.2011.09.003. [PubMed] [CrossRef] [Google Scholar]
17. Stein PK, Sanghavi D, Sotoodehnia N, Siscovick DS, Gottdiener J. Association of Holter-based measures including T-wave alternans with risk of sudden cardiac death in the community-dwelling elderly: the Cardiovascular Health Study. J Electrocardiol. 2010. May-Jun; 43 3: 251- 259. doi: 10.1016/j.jelectrocard.2009.12.009. [PMC free article] [PubMed] [Google Scholar]
18. Slawnych MP, Nieminen T, Kähönen M, et al. REFINE (Risk Estimation Following Infarction Noninvasive Evaluation); FINCAVAS (Finnish Cardiovascular Study) Investigators. Post-exercise assessment of cardiac repolarization alternans in patients with coronary artery disease using the modified moving average method. J Am Coll Cardiol. 2009. March 31; 53 13: 1130- 1137. doi: 10.1016/j.jacc.2008.12.026. [PubMed] [Google Scholar]
19. Bloomfield DM, Steinman RC, Namerow PB, et al. Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation. 2004. October 5; 110 14: 1885- 1889. [PubMed] [Google Scholar]
20. Chow T, Kereiakes DJ, Bartone C, et al. Prognostic utility of microvolt T-wave alternans in risk stratification of patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2006. May 2; 47 9: 1820- 1827. [PubMed] [Google Scholar]
21. Ikeda T, Saito H, Tanno K, et al. T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am J Cardiol. 2002. January 1; 89 1: 79- 82. [PubMed] [Google Scholar]
22. Chow T, Kereiakes DJ, Onufer J, et al. MASTER Trial Investigators. Does microvolt T-wave alternans testing predict ventricular tachyarrhythmias in patients with ischemic cardiomyopathy and prophylactic defibrillators? The MASTER (Microvolt T Wave Alternans Testing for Risk Stratification of Post-Myocardial Infarction Patients) trial. J Am Coll Cardiol. 2008. November 11; 52 20: 1607- 1615. doi: 10.1016/j.jacc.2008.08.018. [PubMed] [Google Scholar]
23. Costantini O, Hohnloser SH, Kirk MM, et al. ABCD Trial Investigators. The ABCD (Alternans Before Cardioverter Defibrillator) Trial. Strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. J Am Coll Cardiol. 2009. February 10; 53 6: 471- 479. doi: 10.1016/j.jacc.2008.08.077. [PubMed] [Google Scholar]
24. Rosenthal TM, Stahls PF., 3rd AbiSamra FM, et al. T-peak to T-end interval for prediction of ventricular tachyarrhythmia and mortality in a primary prevention population with systolic cardiomyopathy. Heart Rhythm. 2015. August; 12 8: 1789- 1797. doi: 10.1016/j.hrthm.2015.04.035. [PubMed] [Google Scholar]
25. Topilski I, Rogowski O, Rosso R, et al. The morphology of the QT interval predicts torsade de pointes during acquired bradyarrhythmias. J Am Coll Cardiol. 2007. January 23; 49 3: 320- 328. [PubMed] [Google Scholar]
26. Haarmark C, Hansen PR, Vedel-Larsen E, et al. The prognostic value of the Tpeak-Tend interval in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Electrocardiol. 2009. Nov-Dec; 42 6: 555- 560. doi: 10.1016/j.jelectrocard.2009.06.009. [PubMed] [Google Scholar]
27. Castro Hevia J, Antzelevitch C. TornésBárzaga F, et al. Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol. 2006. May 2; 47 9: 1828- 1834. [PMC free article] [PubMed] [Google Scholar]
28. Panikkath R, Reinier K, Uy-Evanado A, et al. Prolonged Tpeak-to-Tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol. 2011. August; 4 4: 441- 447. doi: 10.1161/CIRCEP.110.960658. [PMC free article] [PubMed] [Google Scholar]
29. Bang C. N., Devereux R. B., Okin P. M. Regression of electrocardiographic left ventricular hypertrophy or strain is associated with lower incidence of cardiovascular morbidity and mortality in hypertensive patients independent of blood pressure reduction—a LIFE review. Journal of Electrocardiology. 2014;47(5):630–635. doi: 10.1016/j.jelectrocard.2014.07.003. [PubMed] [CrossRef] [Google Scholar]
30. Bacharova L., Chen H., Estes E. H., et al. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging. The American Journal of Cardiology. 2015;115(4):515–522. doi: 10.1016/j.amjcard.2014.11.037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Calore C., Melacini P., Pelliccia A., et al. Prevalence and clinical meaning of isolated increase of QRS voltages in hypertrophic cardiomyopathy versus athlete's heart: relevance to athletic screening. International Journal of Cardiology. 2013;168(4):4494–4497. doi: 10.1016/j.ijcard.2013.06.123. [PubMed] [CrossRef] [Google Scholar]
32. Rautaharju P. M., Zhang Z.-M., Warren J., et al. Electrocardiographic predictors of coronary heart disease and sudden cardiac deaths in men and women free from cardiovascular disease in the Atherosclerosis Risk in communities study. Journal of the American Heart Association. 2013;2(3) doi: 10.1161/jaha.113.000061.e000061 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33. Myerberg RJ, Castellanos A. Cardiac arrest and sudden cardiac death. : Bonow RO, Mann DL, Zipes DP, Libby P. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 5th ed. Philadelphia, PA: W. B. Saunders Co.; 1997: 845- 884.
34. Larisa G Tereshchenko 1, Elsayed Z Soliman 2, Barry R Davis 3, Suzanne Oparil 4 Risk stratification of sudden cardiac death in hypertension// J Electrocardiol . 2017 Nov-Dec;50(6):798-801. doi: 10.1016/j.jelectrocard.2017.08.012. Epub 2017 Aug 14.



