

Volume: 03 Issue: 04 | Jul- Aug 2022 ISSN: 2660-4159

http://cajmns.centralasianstudies.org

Ранняя Диагностика И Современные Методы Диагностики Заболеваний Предстательной Железы

- 1. Бойко Е. В
- 2. Гафурова Н. Т
- 3. Юсупов Ш. Х
- 4. Тилляшайхова Р. М
- 5. Худайбердиева Д. А

Received 2nd May 2022, Accepted 3rd Jun 2022, Online 14th July 2022 Резюме: В статье проведена оценка диагностической информативности трансректальной ультразвукового исследования (ТРУЗИ) компрессионной эластографией ранней В предстательной диагностике рака железы. результате исследования получены следующие данные. Применение комплекса «ТРУЗИ+УЗА+ЭГ» имеет специфичность диагностики РПЖ 78,33% (p<0,001),79,17% (p<0.001), точность предсказуемость положительного теста – 62,50% (p<0,001), а чувствительность для стадий $T \le 2 - 80\%$ (p<0,02). Ультразвуковая эластография ангиография при подозрении на РПЖ необходимы в диагностического составе комплекса. применяются после определения концентрации ПСА, как методики уточнения стадийности РПЖ.

Ключевые слова: рак предстательной железы, ранняя диагностика, ТРУЗИ, эластография, ультразвуковая ангиография.

В настоящее время рак предстательной железы (РПЖ) является одной из значимых медикосоциальных проблем в структуре заболеваемости и смертности среди населения мужского пола. В последнее десятилетие отмечается значительный рост данной патологии [4, 6, 10]. По данным ВОЗ в мире ежегодно насчитывается коло 396 тысяч случаев первично выявленного РПЖ [3, 4]. Ежегодный прирост РПЖ занимает второе место после меланомы, однако превосходит по распространенности рак желудка и легких. Ежегодный прирост РПЖ составляет 64% [1, 2, 3]. По данным зарубежных исследователей летальность от РПЖ занимает 2-3 место, а в США и Норвегии — первое. Смертность от данной патологии на первом году жизни составляет около 30% [12, 15, 16].

Актуальность ранней диагностики патологий ПЖ очевидна в современной медицине. Широкое применение клинико-лабораторных и лучевых методов диагностики практически не решила проблему ранней точной диагностики заболеваний предстательной железы [1, 3]. Практическое здравоохранение при диагностике патологии простаты опирается зачастую на наименее инвазивные методы — пальцевое ректальное исследование (ПРИ), уровень простатспецифического антигена (ПСА) в сыворотке крови и трансректальное ультразвуковое

исследование (ТРУЗИ) [1, 3]. Увеличение ПСА и зоны уплотнения простаты при ПРИ принимаются в качестве основополагающих критериев заболеваний простаты [2, 9, 12].

Участки опухоли на ТРУЗИ визуализируются гипоэхогенными в сравнении со здоровой тканью, но далеко не все такие очаги злокачественны (9-53%) [5, 15]. Кроме того, опухоливые изменения визуализируются как гипер- так и изоэхогенными и не отличаться от здоровой ткани простаты на ТРУЗИ [10, 16].

ТРУЗИ в режиме «серой шкалы» достаточно точно определяет размер ПЖ, визуализирует экстракапсулярную инвазию опухоли и участки простаты с подозрением на опухоль [16]. УЗангиография (УЗА)при ТРУЗИ увеличивает диагностическую ценность последней, позволяя выявлять невидимые в серошкальном ТРУЗИ опухоли, что позволяет дифференцировать РПЖ и прочие патологические процессы с похожей семиотикой по гиперваскулярности патологической опухолевой сети при РПЖ и разницей с усилением нормального сосудистого рисунка ПЖ при простатите или доброкачественной гиперплазии [11].

Для увеличения эффективности диагностики РПЖ необходимо повысить разрешающую способность имеющихся методов визуализации. РПЖ характеризуется опухолевым неоангиогенезом, который диагностируется энергетическим допплеровским картированием (ЭДК) [10, 12]. Опухолевый неоангиогенез это: «...увеличение плотности сосудов и появление мелких извитых сосудов с неправильным ходом» [10]. ЭДК не дает представление о направлении тока крови, но визуализирует кровоток даже на низких скоростях, чего не дает цветовое допплеровское картирование [13]. Однако, повышение притока крови к ПЖ при воспалении снижает специфичность ЭДК [17].

Необходимо учитывать, что так и не определены однозначные стандартные количественные карактеристики кровотока простаты при РПЖ [18]. Dennis L. Cochlin приводил такие данные: «...характеристики гемодинамики при ЭДК с вычислением сравнительных качественных параметров (симметричность кровотока, степень васкуляризации паренхимы простаты и при ТРУЗИ в режиме «серой шкалы» остаются субъективными оценками визуализируемых нарушений» [19]. Энергетическое допплеровское исследование с визуализацией сосудистого рисунка паренхимы простаты констатирует зоны усиления гемодинамики, как вероятные участки опухолевого процесса и они должны быть мишенями для пункционной биопсии [19]. Оптимальный динамический диапазон исследования — 103—109 дБ при частоте 390—400 Гц и частотным фильтром 3,5—5 см/с с целью выявления низкоскоростного кровотока [19]. Средняя скорость кровотока в артериях ПЖ около 8–13 см/с, в венах — 4—6 см/с. средний индекса резистентности сосудов паренхимы — 0,5—0,6, а в капсулярных ветвях — 0,76—0,78 [23].

Комплекс мероприятий дифференциальной диагностики РПЖ, основанный на физикальном обследовании, уровне ПСА, результатах ПРИ и ТРУЗИ с допплеровским исследованием сосудов ПЖ делает более адекватными и точными показания к биопсии простаты и увеличивает ее эффективность [4; 24].

Ультразвуковая соноэластография ПЖ была впервые описана Ophir et al. в 1991 г. [25], констатировали существенные различия в плотности неизмененных и опухолевых участков паренхимы предстательной и молочной желез. В современной медицине применяют два метода, оценки эластичности паренхимы ПЖ: компрессионная эластография и эластография сдвиговой волны.

Основным недостатком компрессионной эластографии является операторозависимость, так как механическая компрессия паренхимы простаты и последующая декомпрессия субъективны и имеют большую разницу у исследователей [14]. Так М. Tsutsumi с соавторами отметили на компрессионной эластографии у 32% ложноположительные результаты, обусловленные

артефактными зонами уплотнения паренхимы простаты при чрезмерной компрессии [27] Они попытались стандартизировать метод компрессионной эластографии применением специального баллона с воздухом при ТРУЗИ с компрессионной эластографией, что давало равномерную компрессию на ПЖ, увеличило чувствительность до 72,5% и специфичность – до 97,7% [27].

Здоровая паренхима ПЖ обладает высокоэластическими характеристиками картирования и равномерную окраску при соноэластографии зеленым цветом не зависимо от объема железы. У мужчин в этом исследовании, не имеющих клинически воспаления и отрицательные результаты ПРИ, общий ПСА был ниже 4нг/мл при плотности ПСА менее 0,04 нг/мл/см³ стандартный ТРУЗИ не визуализировал никаких структурных отклонений периферических зон ПЖ (при объемах 20-100 см³) неизмененная паренхима всегда была зеленой на соноэластограммах [28]. Эластичность различных зон простаты обусловлена физиологическим состоянием мужчины, становясь жестче с возрастом и увеличением объема простаты (центральной части) [28]. Это подтвердили и Согтеаѕ и соавторами констировавшие равномерно эластичное картирование паренхимы простаты в молодости у здоровых мужчин и увеличение гетерогенности и плотности паренхимы при аденоме ПЖ [21].

Ложноположительные результаты соноэластографии вызывают и простатит, фиброз, атрофия паренхимы, аденомиоматоз и аденома ПЖ – увеличение жесткости паренхимы затрудняет диагностику РПЖ на соноэластографии [13].

Диагностический потенциал эластографии сдвиговой волны практически не исследован, что обусловливает невозможность рекомендовать в скрининге патологий ПЖ [28].

Цель исследования: оценить диагностическую информативность трансректального ультразвукового исследования (ТРУЗИ) с компрессионной эластографией в ранней диагностике рака предстательной железы.

Материалы и методы исследования: изучены диагностические материалы 120 пациентов, обратившихся с подозрением на РПЖ в поликлинику РСНПМЦОиР за период 2019 по 2021 года.

В основную группу вошли 120 мужчин в возрасте от 39 до 81 года, средний возраст пациентов был 57,6 \pm 3,84 года. Больные были подразделены на 4 группы в зависимости от установленной стадии Т РПЖ: 1 группа (стадия Т1 РПЖ) – 16 больных; 2 группа (стадия Т2 РПЖ) – 49 больных; 3 группа (стадия Т3 РПЖ) – 32 пациента; 4 группа (стадия Т4 РПЖ) – 23 пациента.

Всем пациентам с направительным диагнозом «рак предстательной железы» (РПЖ) до проведения специфического обследования нами проведено ПРИ простаты и полностью исключена какая-либо инфекционная патология мочевых путей и предстательной железы с применением бактериоскопии и ИФА. При отрицательных результатах предварительного обследования нами выполнено комплексное исследование ПЖ, включающее определение общей и свободной фракции ПСА и их соотношения, ТРУЗИ (с допплерографическим и компрессионным эластографическим усилением), МРТ органов малого таза и прицельная биопсия с гистологической верификацией процесса.

В нашей работе трансрекальное исследование простаты, дополняли трансабдоминальным УЗИ, с целью выявления возможных вторичных очагов. Обследование пациентов проводилось на аппарате «HI VISION Preirus», Hitachi Medical Corporation (Япония), с необходимым комплектом датчиков.

При ТРУЗИ в режиме «серой шкалы» оценивали объем ткани ПЖ и ее контуры, состояние капсулы, семенных пузырьков, перипростатических тканей, эхо-структуру ткани ПЖ и наличие очаговых изменений [6].

Эластограммы проводили следующим образом: путем оказания небольшой компрессии и декомпрессии ПЖ трансректальным датчиком, адекватность оказания компрессии оценивалась визуально, ориентируясь на показатели шкалы компрессии в режиме реального времени, при оказании адекватной компрессии индикатором на соноэластографическом изображении были полное отображение капсулы и равномерное распределение эластичности ПЖ (при отсутствии аденоматозных изменений в центральной части), при этом амплитудная кривая, демонстрирующая степень оказания компрессионного воздействия, не выходила за пределы референсных (ограничительных) линий, расположенных горизонтально в верхних и нижних отделах шкалы [8].

Оценка эластичности ПЖ проводилась по классификации соноэластограмм Панфиловой Е.А.: «...I тип картирования характеризуется однородным картированием зеленым цветом, и отражает средние значения эластичности неизмененной паренхимы ПЖ, II тип отображается на соноэластограммах сочетанием зеленых и красных цветовых участков, отображая среднюю и высокую эластичность тканей, при III типе картирования на соноэластографических изображениях визуализируются мозаично расположенные участки, сочетающие фрагменты зеленого и синего цвета, указывая на присутствие участков повышенной жесткости (плотности), а IV тип картирования характеризуется однородным плотным участком, тотально окрашиваемым темно-синим цветом» [8].

Результаты исследования: В режиме серой шкалы РПЖ у подавляющего большинства пациентов отображался гипоэхогенным образованием. Однако, гипоэхогенность не была абсолютно специфична для РПЖ.

Стадия Т1 РПЖ (І группа) была установлена у 16 пациентов, имевшим направительный диагноз ДГПЖ и подозрение на РПЖ, из них у 9 пациентов показатели ПСА соответствовали серой зоне, и не превышали предполагаемое значение по отношению к объему увеличенной железы. Подозрительные участки в паренхиме предстательной железы были обнаружены по данным УЗИ с эластографией, после чего была выполнена прицельная биопсия с подтверждением онкопроцесса. Всем этим пациентам в дальнейшем выполнена простатэктомия.

На стадии Т2 РПЖ (II группа) констатировали гипоэхогенный фокус паренхимы ПЖ у 45 (91,8%) исследуемого или отсутствие эхографических отклонений – у 4 (8,2%) мужчин.

В III группе диагностировали различную эхографическую картину локальных и диффузных поражений паренхимы ПЖ. У больных III группы с Т3 стадией РПЖ самой трудной задачей являлось определение инвазии капсулы ПЖ. Определение эхографической капсулы простаты как гиперэхогенной линии без обрывов удавалось не у всех пациентов. Вследствие этого подтвердить Т3 РПЖ по признаку экстракапсулярного распространения опухоли представилось возможным лишь при асимметричной деформации границ простаты увеличенным объемом, что зафиксировано лишь у 12 (37,50%) пациентов с РПЖ Т3 стадии.

В стадии Т4 (IV группа) констатировали увеличение объема простаты, зачастую со снижением эхогенности. При локально распространенном РПЖ (4 пациента – 17,39%) дифференцировка паренхимы простаты среди окружающих тканей была сложной.

Сложной задачей явилась дифференциация РПЖ в проекции шейки мочевого пузыря (МП) и семенных пузырьков. Из 8 (34,78%) пациентов с распространенным РПЖ установлено расширение семенных пузырьков у 4 больных, а асимметрию зафиксировали только в 2

случаях, у оставшихся 4 мужчин выявили деформацию семенных пузырьков. Оценка взаимоотношений простаты и нижнего края семенных пузырьков крайне затруднена вследствие деформации границы простаты опухолью и смещений семенных пузырьков увеличенной простатой. У 2 пациентов представилась возможность выявить дополнительную эхогенную массу в области нижних краев семенных пузырьков, происходящую из простаты, что, по нашему мнению, было признаком их вовлеченности в злокачественный процесс.

Утолщение стенки МП в области шейки констатировали у всех 23 пациентов IV группы с РПЖ в стадии Т4 (100%). Подобное утолщение нами констатировано у 28,57% (14 больных) с РПЖ в стадии Т2, а также у 40,83% (49 пациентов) всех исследованных пациентов. Исходя из этого данный признак в аспекте диагностики раковой вовлеченности МП не применим. ТРУЗИ диагностировало вовлеченность МП лишь у 3 пациентов с признаками бугристости в проекции шейки при большом объеме железы. Хотя именно эти случаи наиболее сложны, так как подразумевают обязательную дифференциальную диагностику между РПЖ, прорастающей в МП, и опухолью МП, прорастающей в простату.

По нашим исследованиям итоговые расчётные данные эффективности ТРУЗИ при РПЖ отображены в таблица 1.

Таблица 1. Диагностическая эффективность ТРУЗИ для РПЖ

Чувствительность	89% (0,89)
Специфичность	85% (0,85)
Точность	77% (0,77)

При ТРУЗИ вкупе с ультразвуковой ангиографией (УЗА) нами констатированы маркеры неоваскуляризации при РПЖ: асимметрия локальной васкуляризации тенденцией к увеличению (14,17%); дезорганизация ангиогенеза пораженной области (извитость, прерывистость, разнокалиберность) (47,50%); диспропорция сосудистого рисунка (38,33%) в измененном участке.

Объем инвазии новообразования на фоне смешанной эхогенности не поддается диагностике обычным ТРУЗИ, поэтому реконструкция сосудистого древа точно диагностировало размер и границы раковых очагов и глубину распространения. Изучение ангиоархитиктоники ПЖ, с помощью допплерографии позволяло более точно определять стадии РПЖ, так как при ТРУЗИ в большинстве случаев тяжело точно проследить инвазию в капсулу простаты. Дополнение ТРУЗИ УЗА сделало метод более точным, особенно что касалось стадий РПЖ (таб. 2).

Таблица 2. Диагностическая эффективность ультразвуковой ангиографии для РПЖ

Чувствительность	90% (0,90)
Специфичность	87% (0,87)
Точность	89% (0,89)

Более того, сочетание ТРУЗИ и УЗА дает возможность проследить изменения в железе на фоне консервативного лечения, что позволяет использовать метод в качестве основного в динамическом контроле терапии РПЖ.

РПЖ в нашем исследовании характеризовался различными эхографическими признаками. На ТРУЗИ РПЖ характеризовался наличием одного гипоэхогенного участка лишь у 20,0% (24 пациента), 26,67% (32 пациента) констатировали несколько очагов поражения без четких контуров с вовлечением как периферической зоны, так и периуретральной зоны железы. Эхогенные формы РПЖ (изо- и гипер-) констатированы у 2 больных (1,67%), опухолевые фокусы не однородны с гипоэхогенными включениями и мелкими петрификатами (рис. 1).

Рис. 1. РПЖ представлен изоэхогенными участками и гиперэхогенными включениями на фоне ДГПЖ.

Таким образом диагностика на ТРУЗИ гипоэхогенных фокусов, признанных существенным маркером РПЖ, нуждается в тщательной дифференциальной диагностике и полноценном обследовании с целью исключения других причин данной эхографической картины.

Предлагаемые эхографические маркеры РПЖ способствуют ранней диагностики заболевания и существенно ускорят назначение специфического тлечения данной патологии, также могут уменьшить число инвазивных диагностических вмешательств, что актуально при преобладании в данной патологии пациентов пожилого и старческого возраста.

Однако полностью достоверная диагностика РПЖ по ТРУЗИ без морфологической верификации диагноза не возможна. Но ТРУЗИ предоставляет достоверную и ценную диагностическую информацию о паренхиме простаты, что применяется не только при РПЖ, но и при других патологиях простаты.

Нами проанализирована информативность комплексного применения уровня ПСА>4 нг/мл, ПРИ и ТРУЗИ (табл. 3).

Попомотрум	Диагностические методы							
Параметры	ПРИ	ПСА>4 нг/мл	ТРУЗИ	ПСА>4нг/мл +ПРИ+ТРУЗИ				
Чувствительность	51	92	89	94,2				
Специфичность	89	35	85	83,9				
Точность	68	59	77	78.4				

Таблица 3. Информативность различных методов диагностики РПЖ (%)

Таким образом комплексный диагностический подход при высокой чувствительности (94,2%) существенно увеличивает специфичность (83,9%) и точность (78,4%). Это дает возможность точнее направлять пациентов на биопсию ПЖ и снизить частоту ее отрицательных ответов.

Результаты проведенной нами эластографии ПЖ позволили прийти к выводу, что участки РПЖ характеризуются большей жесткостью относительно здоровой паренхимы простаты у подавляющего большинства исследуемых — 3 и 4 типы картирования, что совпадает и с мнениями других ученых [8; 13], нами не зафиксированы статистически значимые различия в частоте встречаемости типов картирования при различных степенях дифференцировки РПЖ (р>0,05), но для определения достоверной разницы необходимы более многочисленные исследования.

Из наших пациентов у 16 (13,33%) констатирован 1 тип, у 14 (11,67%) – 2 тип, у 29 (24,17%) – 3 тип, у 61 (50,83%) – 4 тип картирования. Статистический анализ продемонстрировал достоверность различий встречаемости для 4 типа картирования при РПЖ (p<0,002). Встречаемость остальных трех типов картирования при РПЖ не имеет достоверной разницы между собой и подразумевает совместный анализ эластографии (ЭГ) ПЖ с результатом ТРУЗИ в режиме серой шкалы и УЗ-ангиографии (УЗА).

Информативность методик ТРУЗИ для диагностики РПЖ представлена в таблице 4.

Таблица 4. Сравнительная информативность различных методик ТРУЗИ

Методики	Чувстви-тельность		Специ	фичность	Точность		ППТ		ОПТ	
	абс	%	абс	%	абс	%	абс	%	абс	%
Серая шкала	82	68,33	75	65,50	77	64,17	55	45,83	98	81,67
УЗА	69	57,50	50	41,67	56	46,67	37	30,83	82	68,33
ЭГ	99	82,50	51	42,50	68	56,67	49	40,83	107	89,17

Примечание: ППТ - положительный предсказуемый тест, ОПТ – отрицательный предсказуемый

Чувствительность ЭГ для РПЖ Т2-стадии зафиксирована достоверно большей относительно режима серой шкалы и УЗА (72,75% против 58,05% и 38,84% соответственно (p<0,02, p<0,001)).

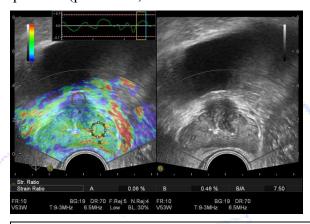
ЭГ позволило у 72 (72,50%) пациентов правильно интерпретировать этиопатогенез гипоэхогенности, что диктует необходимость расширения возможностей ТРУЗИ применением дополнительных исследований – ЭГ и УЗА, повышая специфичность комплексного ТРУЗИ на 11,5%.

Общеизвестно, что информативность диагностических методов РПЖ обратно пропорциональны объему железы [8; 13]. Наше исследование так же позволило прийти к мнению, что диагностическая ценность ЭГ уменьшалась при росте объема ПЖ.

Результат анализа информативности определил специфичность в 70,85%, 31,85% и 20,05%, точности в 75,88%, 49,26% и 41,22% при объеме ПЖ менее $40 \,\mathrm{cm}^3$ и более $80 \,\mathrm{cm}^3$ (p<0,02). Точность и специфичность серой шкалы при объеме ПЖ более $80 \,\mathrm{cm}^3$ статистически достоверно выше $9\Gamma - 52,92\%$ и 60,0% соответственно (p<0,05).

По результатам нашего исследования ЭГ ПЖ имеет несколько ограничений: объем ПЖ больше 80 см^3 снижает точность исследования до 41,25% и проигрывает режиму серой шкалы, рак в центральной части ПЖ диагностируется на ЭГ слабо – точность равняется лишь 29,17%.

Результаты комплексного ТРУЗИ с ЭГ имели диагностическую эффективность 88,33%, число ложноотрицательных ответов уменьшилось на 30,0%, ложноположительных — на 37,1% (табл. 5).


Комплексное ТРУЗИ (серая шкала + УЗА и серая шкала + УЗА + ЭГ) усиливает чувствительность и предсказуемость отрицательного теста на 5,93% и 8,65% соответственно, предсказуемость положительного теста — на 14,13% (p<0,02), специфичность на 12,83% (p<0,01), точность на 11,52% (p<0,05).

Методики	Чувстви- тельность		Специфич- ность		Точность		ППТ		ОПТ	
	абс	%	абс	%	абс	%	абс	%	абс	%
Серая шкала +УЗА	86	71,67	79	65,83	81	67,50	58	48,33	100	83,33
Серая шкала +УЗА+ ЭГ	96	80,00	94	78,33	95	79,17	75	62,50	107	89,17

Таблица 5. Сравнительная информативность различных комплексов ТРУЗИ

Примечание: ППТ - положительный предсказуемый тест, ОПТ – отрицательный предсказуемый тест.

ЭГ необходимо проводить всем пациентам с умеренным (4-10нг/мл) увеличением концентрации ПСА и отрицательными результатами ПРИ, так как она позволяет дифференцировать очаги РПЖ от уплотнений другой природы, похожих в режиме серой шкалы и при УЗА (рис. 2 и 3).

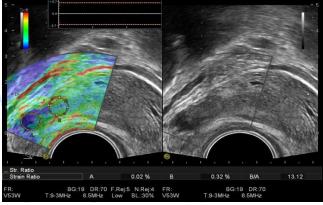


Рис. 2. ТРУЗИ в режиме серой шкалы и компрессионной ЭГ. Гипоэхогенный неоднородный узел с размытыми контурами в режиме серой шкалы (справа), при ЭГ окрашивается синим цветом (уплотнение в 7,5 раз).

Рис. 3. ТРУЗИ в режиме серой шкалы и компрессионной ЭГ. Гипоэхогенный неоднородный узел с размытыми контурами в режиме серой шкалы (справа), при ЭГ окрашивается синим цветом (уплотнение в 13 раз).

Таким образом, диагностика РПЖ, особенно на ранней стадии, подразумевает применение нескольких методов диагностики, так как ни один из них не обладает всеобъемлющей результативностью, а сочетание результатов ПРИ и ТРУЗИ при ПСА>4 нг/мл дает более лучшие результаты.

Выводы:

Применение комплекса «ТРУЗИ+УЗА+ЭГ» имеет специфичность диагностики РПЖ 78,33% (p<0,001), точность — 79,17% (p<0,001), предсказуемость положительного теста — 62,50% (p<0,001), а чувствительность для стадий $T \le 2 - 80\%$ (p<0,02).

Эластография играет огромную роль в дифференциации РПЖ от воспалительных заболеваний простаты, так для РПЖ в 88% случаях характерен III и IV типы эластограмм (p>0,05), что не позволяет достоверно дифференцировать РПЖ с аденоматозными изменениями паренхимы простаты. РПЖ в 68% обладает большой жесткостью ткани – IV тип эластограммы (p<0,002).

Ультразвуковая эластография и ангиография при подозрении на РПЖ необходимы в составе диагностического комплекса, они применяются после определения концентрации ПСА, как методики уточнения стадийности РПЖ.

Список литературы:

- 1. Аполихин О.И. Скрининг рака предстательной железы: оценка с позиции клиникоэкономической эффективности // Экспериментальная и клиническая урология. - 2015. - №1. -C. 12 - 14.
- 2. Бурделова Н.Н. Сочетанное использование методик соноэластографии и гистосканирования при исследовании предстательной железы: Дисс. ... канд. мед.наук. – М.: 2017. – 98с.
- 3. Васильев А.О., Ширяев А.А., Говоров А.В. и др. Биомаркёры в ранней диагностике рака предстательной железы // Патогенез. – 2018. - Том 16. - № 1. – С. 4-10.
- 4. Воробьев А.В. Рак предстательной железы: эволюция взглядов // Вопросы онкологии. -2009. - T. 55. - № 2. - C. 241-250:
- 5. Говоров А.В., Васильев А.О., Садченко А.В. и соавт. Роль гистосканирования в выявлении рака предстательной железы // Consilium Medicum. - 2015. - Т. 17. №7.- С. 8-11
- 6. Громов А.И. Методика измерения размеров предстательной железы при ультразвуковом исследовании // Урология и нефрология. - 1997. - №4. - С. 17-19.
- 7. Курнаков Значение комплексной оценки клинико-лабораторных A.M. допплерометрических показателей для диагностики заболеваний предстательной железы.: Дисс. ... канд. мед.наук. – СПб.: 2017. – 139с.
- 8. Панфилова Е.А. Эластография в дифференциальной диагностике рака предстательной железы. Дисс. ... канд. мед. наук. М. – 2011 – 127с.
- 9. Прилепская Е.А. Гистологические особенности рака предстательной железы Экспериментальная и клиническая урология. - 2016. - №4. – С. 56-58.
- 10. Пушкарь Д.Ю. Раснер П.И. Дифференциальная диагностика рака и доброкачественной гиперплазии предстательной железы // РМЖ.- 2014. - Т. 22. -№ 17. -1298-1303;
- 11. Пушкарь Д.Ю., Колонтарев К.Б., Алексеев Б.Я. и соавт. Урология. Российские клинические рекомендации. Москва. - 2016. 492с
- 12. Раснер П.И. Точность предоперационной оценки степени злокачественности и стадии рака предстательной железы // Consilium Medicum. – 2017. - №7. – С. 15 - 19.
- 13. Хасанов М.З. Мультипараметрическое ультразвуковое исследование в диагностике заболеваний предстательной железы. дисс. ... канд. мед. наук. М. – 2021. 133с.
- 14. Boehm K. Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols // J Urol. -2015. - Vol. 193. - No 3. - P. 794 - 800.
- 15. Bryant R.J. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the protect study // J Natl Cancer Inst. – 2015. – Vol. 107. - №7. – p. 95-101.
- 16. Carlsson S.V., Roobol M.J. Improving the evaluation and diagnosis of clinically significant prostate cancer in 2017 // Curr Opin Urol. – 2017. – Vol. 27. - №3. – P. 198-204.

- 17. Cheng S., Rifkin M.D. Color Doppler imaging of the prostate: important adjunct to endorectal ultrasound of the prostate in the diagnosis of prostate cancer // Ultrasound Q. - 2001. - 17(3). - P. 185-189.
- 18. Cui T., Kovell R.C., Terlecki R.P. Is it time to abandon the digital rectal examination? Lessons from the PLCO Cancer Screening Trial and peer-reviewed literature // Curr Med Res Opin. – 2016. - Vol. 32. - №10. - P. 1-7.
- 19. Del Rosso A., Di Pierro E.D., Masciovecchio S. et al. Does transrectal color Doppler ultrasound improve the diagnosis of prostate cancer? // Arch. Ital. Urol. Androl. - 2012. - 84(1). - P. 22-5.
- 20. Gandaglia G. Is there a role for pure clinical prediction models in prostate cancer in the contemporary era? // BJU Int. – 2017. –Vol. 119. – N5. – P. 652–653.;
- 21. Gnanapragasam V.J. Improving clinical risk stratification at diagnosis in primary prostate cancer: a prognostic modelling study // PLoS Medicine. – 2016. – Vol. 13. - №8. - P. 206-213.
- 22. Hamann M.F. Application of ultrasound imaging biomarkers (HistoScanningTM) improves staging reliability of prostate biopsies // BMC Res Notes. – 2017. – Vol. 10. - №1. - P. 579-587.
- 23. Leventis A.K., Shariat S.F., Utsunomiya T., Slawin K.M. Characteristics of normal prostate vascular anatomy as displayed by power Doppler. // Prostate. - 2021. - 46(4). - P.281-288.
- 24. Mottet N. EAU-ESTRO-SIO1G guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent // European Urology. – 2017. – Vol. 71. - №4. – P. 618 – 629.
- 25. Ophir J., Cespedes I., Ponnekanti H. et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. // Ultrasonic Imaging. - 1991. - vol. 13. - №2. - pp. 111-134.
- 26. Smeenge M., de la Rosette J.J., Wijkstra H. Current status of transrectal ultrasound techniques in prostate cancer. // Curr Opin Urol. - 2012. - №22(4). - pp. 297-302
- 27. Tsutsumi M., Miyagawa T., Matsumura T. et al. Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. // American Journal of Roentgenology. - 2010. - vol. 194. - no. 6. - pp. W471-W476
- 28. Vinnik YY, Andreichikov AV, Klimov NY. Contemporary concept of the diagnosis of prostate cancer. // Urologiia. 2017 Jun; (2):110-115.