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Abstract: Breast cancer continues to be a primary cause of cancer-related mortality in women
worldwide, highlighting the need for the creation of effective predictive models to facilitate early
identification and treatment. This project is about building a machine learning-based prediction
model using linear regression to estimate the likelihood that breast cancer is malignant or benign
based on different clinical criteria. The project is divided into three parts: Data Collection, Model
Training, and Prediction. It uses the breast cancer dataset from the "sklearn" package. The Data
Collection Module loads and preprocesses the dataset to make sure it is clean and ready for analysis.
The Model Training Module uses linear regression to train the model and assesses its effectiveness
using accuracy metrics on both the training and test datasets. The Prediction Module makes
predictions in real time, so users can add new data and receive instant feedback on potential
diagnoses. The study shows how well machine learning works in medicine by putting these parts
together. It also shows how important it is to make accurate, on-time predictions to improve patient
outcomes. Future improvements might include exploring more complex algorithms, improving
model performance, and adding more datasets. All of these things would help with continued
research and detection of breast cancer. By bringing these parts together, the project shows how
useful machine learning can be in medicine and how important it is to make accurate, timely
predictions to improve patient outcomes. Future improvements may include exploring more
complex methods, tuning hyperparameters to improve performance, and adding more datasets to
strengthen the model. All of these things would help with breast cancer research and detection.

Keywords: Breast Cancer, Causes Of Cancer, Diagnosis And Treatment, Data Collection, Training
Module, Research And Diagnosis, Enhancing Patient, Advanced Algorithms

1. Introduction

Despite major improvements in treatment and awareness, breast cancer is still one
of the most common causes of cancer deaths in women around the world. Finding the
disease early is important for improving patient outcomes because it allows doctors to
intervene and treat it quickly [36]. Conventional diagnostic techniques, although
efficacious, often involve invasive procedures and may not consistently yield precise
predictions of disease progression. Machine learning (ML) is a burgeoning field that
analyses large volumes of medical data and makes predictions based on patterns that may
not be obvious to human experts. This is a viable alternative [55]. Machine learning (ML)
models can be trained to predict the likelihood of breast cancer developing or recurring
using historical patient data, such as demographic information, tumour features, and

genetic markers. This method not only makes forecasts more accurate but also helps reduce
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the need for intrusive procedures, making it a non-invasive and effective way to find
problems early [45]. We want to use different machine learning techniques, such as
Logistic Regression, Random Forests, and Support Vector Machines, in this study to
determine whether they can predict breast cancer outcomes.

This study aims to determine the most effective algorithm for breast cancer
prediction by comparing the models' performance based on accuracy, sensitivity, and
specificity, hence enhancing the reliability of diagnostic processes in clinical environments.
Breast cancer is still one of the most common causes of death in women. Early detection is
very important for successful treatment and better survival rates [37]. While traditional
diagnostic approaches work, they often require invasive procedures and don't always
provide accurate prognostic information [70]. Moreover, the vast volume and complexity
of medical data, encompassing patient demographics, tumour characteristics, and genetic
markers, pose a significant obstacle for doctors in making prompt, precise decisions [46].
This research aims to address the following question: given machine learning's capacity to
analyse large datasets and uncover hidden patterns, how can we use machine learning
algorithms to forecast breast cancer outcomes better, helping doctors detect the disease
earlier and make more accurate diagnoses? The purpose is to create and test different
machine learning models, such as Logistic Regression, Random Forests, and Support
Vector Machines, to assess their ability to detect breast cancer by evaluating accuracy,
sensitivity, specificity, and overall predictive performance [54].

The goal of the solution is to develop a reliable, non-invasive tool that improves
breast cancer prognosis accuracy, leading to better diagnosis and treatment planning in
clinical settings [63]. The main goal of this project is to develop a reliable and accurate
machine learning model for predicting breast cancer outcomes, with an emphasis on early
detection and supporting healthcare professionals' decision-making [38]. This project aims
to create a non-invasive tool that analyses patient data to determine whether a tumour is
benign or malignant using several machine learning algorithms. This would improve
diagnostic accuracy and reduce the need for invasive procedures [48]. The first step in the
project will be to gather and clean the data. This means gathering a lot of information about
breast cancer, such as information about the patients, the tumours, and the genetic markers
[68].

We will clean, standardise, and transform the data into a format suitable for training
machine learning models [44]. This will ensure that any missing or incorrect data is
handled appropriately. The next step in the project is to develop and train machine
learning models. To create prediction models, we will use several methods, including
Logistic Regression, Random Forests, and Support Vector Machines (SVMs). The goal of
training these models on historical patient data is to forecast breast cancer outcomes
accurately. We will use cross-validation and hyperparameter tuning to stabilise the model
and avoid overfitting [62]. The project will also assess and compare how well these models
perform using key metrics such as accuracy, sensitivity, specificity, and precision. By
comparing models, we will be able to identify the one that best predicts breast cancer [35].
We will also perform a feature importance analysis to identify which factors are most
important for predicting. This will provide doctors with more information. Finally, the
research will examine how to combine and, if appropriate, apply the best-performing
model in real-world clinical settings [53]. The goal is to create a useful tool that may help
healthcare professionals better diagnose and treat breast cancer cases.

Scope and Motivation

The goal of this project is to create a machine learning-based system that can predict
the outcomes of breast cancer [41]. The main goals are to help doctors make better decisions
and to find the disease early. There are a few important steps in the project:
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¢ Gathering and preparing data: The study will use publicly available datasets containing
information on patients' demographics, tumour features, and genetic markers. To
prepare the dataset for analysis, it will undergo data preprocessing, including cleaning,
normalisation, and feature selection.

e Model Development: To build models that predict outcomes, we will use machine
learning methods such as Logistic Regression, Random Forests, and Support Vector
Machines. To distinguish between benign and malignant tumours, these models will
be trained on data from previous patients.

e Model Evaluation: We will use metrics such as accuracy, sensitivity, specificity, and F1-
score to assess how well each model performs [69]. The initiative will also assess how
well these models perform to identify the best algorithm for predicting breast cancer.

e Feature Importance Analysis: The study will examine how different variables (such as
tumour size and age) affect the model's predictions. This will help us understand what
factors are most important in diagnosing breast cancer.

¢ Deployment Possibilities: The main goal of the project is to create and test models, but
it will also look into how they could be used in clinical settings to help doctors make
early diagnoses and predictions.

The scope does not encompass advanced image-based analysis (e.g., mammography
interpretation utilising deep learning) or the creation of novel algorithms [64]. The
emphasis will be on utilising and evaluating current machine learning methodologies on
structured clinical data. The impetus for this study arises from the pressing necessity for
enhanced breast cancer diagnostic instruments. Breast cancer is one of the most common
causes of death in women around the world. Early identification is crucial for improving
survival rates [34]. But traditional diagnostic approaches generally rely on intrusive
procedures and subjective analysis, which can delay diagnosis or lead to incorrect
predictions. Machine learning is a promising option because it provides data-driven
models that can analyse patient data more objectively and quickly than humans can [52].
As healthcare data becomes more accessible, machine learning algorithms can find
patterns and connections that might not be obvious with traditional methods [43]. This
leads to more accurate predictions and improved treatment outcomes.

Existing System

In contemporary clinical practice, the diagnosis and prognosis of breast cancer
predominantly depend on conventional procedures, typically encompassing a
combination of medical imaging, biopsy, and histological analysis [40]. These methods are
well-known, but they have several problems that make it harder to find and predict breast
cancer outcomes early on.

Medical Imaging: Mammograms, ultrasounds, and MRIs are among the most
common methods for detecting abnormal growths in breast tissue [49]. Imaging is good
for detecting lumps or masses, but it doesn't always distinguish between benign and
malignant cancers. Also, the accuracy of these methods generally depends on the
radiologist's ability to interpret the images, which means there is a risk of human error or
bias [67].

Biopsy and Histopathology: A biopsy, which involves taking a tissue sample and
examining it under a microscope, remains the best way to confirm the presence of cancer.
It is very accurate, but it is also intrusive, time-consuming, and expensive [47]. Also, it can
take several days to get the results of biopsies, which can delay diagnosis and therapy. In
some situations, biopsies might cause problems like infections or pain for the patient.

Statistical Models: The Gail Model and the Breast Cancer Risk Assessment Tool are
two examples used in various medical contexts to estimate a person's likelihood of
developing breast cancer [51]. These models use demographic and clinical information,
like age, family history, and reproductive history. But they typically don't work well since
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they only use a small number of features and can make the complicated elements that lead
to breast cancer too simple [65].

Limited Use of Machine Learning: People have tried using machine learning to
predict breast cancer over the past few years, but it hasn't caught on in clinical settings yet
[56]. Some current systems use simple machine learning models, such as Decision Trees or
Logistic Regression, on tiny datasets. Still, their predictive ability is generally limited by
poor preprocessing, insufficient feature selection, and insufficient training data [42]. Many
of these systems don't work well with different patient types, which makes their results
inconsistent and limits their usefulness in real life.

Problems with Early Detection: One of the biggest problems with the current
approach is that it can't find cancer early enough. Sometimes imaging tools can't detect
tiny cancers or tumours in thick breast tissue [39]. This can lead to missed diagnoses or late
diagnoses, when the cancer has already spread to more advanced stages, making treatment
less likely to work. In short, current systems are useful for diagnosing problems, but they
have drawbacks, such as requiring intrusive tests, relying on human interpretation, and
not being very good at predicting outcomes [50]. These drawbacks underscore the need
for more sophisticated, non-invasive, and data-driven methodologies, such as machine
learning algorithms, which can analyse complex patient data and provide more reliable
forecasts for early breast cancer detection [66].

Literature Survey

Delen and his team looked at how well three data mining methods —artificial neural
networks (ANN), decision trees (DT), and logistic regression (LR)—could predict how
long someone with breast cancer would live [6]. They trained and tested their models using
the SEER database, which stands for Surveillance, Epidemiology, and End Results. The
research indicated that decision trees outperformed both logistic regression and neural
networks in terms of accuracy. The research underscores the capabilities of machine
learning algorithms, particularly decision trees, in medical diagnostics and prognostic
forecasting [1]. The paper focused on using Support Vector Machines (SVMs) to classify
breast cancer as benign or malignant. The research used the Wisconsin Breast Cancer
Dataset (WBCD) and applied feature selection techniques to improve classification
accuracy [10]. The SVM model performed very well, with an accuracy of 98%. This shows
that integrating feature selection with machine learning models can improve prediction
performance. This study emphasised the importance of selecting relevant features for the
efficacy of machine learning models in healthcare [2]. The paper [3] examined the random
forests algorithm and its potential for diagnosing diseases, particularly breast cancer.
Random forests are a type of ensemble learning that combines the results of several
decision trees to make better classifications and avoid overfitting [11].

Biau's research showed that random forests are effective for medical datasets with
many attributes and can uncover complex relationships in the data [8]. This study
demonstrated the superiority of ensemble approaches over individual classifiers for
forecasting medical outcomes, such as breast cancer. The paper [4] examined how deep
learning methods can be applied to medical imaging, including breast cancer diagnosis [9].
The review found that convolutional neural networks (CNNs) outperform traditional
image processing methods at detecting malignant lesions in mammograms. Even though
CNNs are quite accurate, the study noted that they require large labelled datasets and
substantial computing power, making them difficult to apply in clinical settings. This
survey emphasised the capabilities of deep learning in image-based cancer detection. The
research [5] examined how well different machine learning algorithms, such as Decision
Trees, Naive Bayes, and k-Nearest Neighbours (k-NN), could predict breast cancer. They
used the Wisconsin Breast Cancer Dataset to find that Decision Trees were the most
accurate, followed by Naive Bayes and k-NN. The study stressed the importance of
comparing multiple algorithms to identify the best model for specific medical datasets [7].
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It also noted that more complex models are often more accurate, but simpler models like
Decision Trees can still work well with some kinds of data.

Technical Requirements

The success of a machine learning project for predictive modelling depends heavily
on having the right hardware and software available. When using real-world datasets and
algorithms such as logistic regression and ensemble methods, the computer environment
is critical to the system's speed, reliability, and overall performance [14]. A good mix of
sufficient processing power, memory, storage, and the right software ecosystems ensures
the project runs smoothly from data preprocessing to model training and evaluation. From
a hardware perspective, the central processing unit is still the most important part of the
computer, performing all the math. If you have an Intel i5 or higher quad-core processor,
it should be able to run machine learning algorithms quickly and easily [30]. Training
processes generally include repeated mathematical operations, matrix calculations, and
optimisation steps that are performed repeatedly [21]. Even with datasets that aren't very
big, like the Titanic survival dataset or other classification issues, the amount of work that
needs to be done goes up when you compare multiple algorithms, use cross-validation
methods, or fine-tune hyperparameters. Ensemble methods are powerful, but they require
more processing power because they use multiple models simultaneously [26]. So, a faster
processor not only speeds up execution but also reduces lag during testing. This lets
researchers and students iterate more quickly and build more accurate models.

Another important part of the hardware arrangement is the amount of memory it
has. At least 8 GB of RAM is recommended for smooth performance when importing
datasets, handling data frames, and other feature engineering tasks [25]. When working
with machine learning, you often have to make a lot of temporary copies of data,
intermediate variables, and modified features. If there isn't enough memory, the system
will slow down or possibly crash, especially when you're viewing data or running
assessment procedures. Adding 16 gigabytes or more of RAM greatly increases
productivity by letting you use multiple tools at once, process larger datasets, and support
more complex models without having to swap data to disk too often. This is especially
critical when you're working in interactive settings, with graphs, tables, and notebooks
open at the same time. Storage capacity also helps the pipeline at different points in time
[31]. To store raw datasets, preprocessed files, trained models, libraries, and backup copies
of projects, you should have at least 50 gigabytes of free space. When you analyse data,
you often make numerous versions of cleansed datasets or altered subsets [13]. Machine
learning libraries and the frameworks that use them also take up a lot of storage space.
Extra storage helps save visualisation outputs, exported results, and documents. Keeping
enough storage space helps ensure the system stays responsive and prevents full-disk
issues from bringing it down.

As projects grow or move toward deep learning architectures, graphics processing
units become increasingly significant [33]. This is because standard machine learning
methods, such as logistic regression or random forests, typically run on the CPU. If the
project grows to include neural networks or large ensemble models, a dedicated GPU, such
as an NVIDIA GPU, can significantly speed up training time. Most deep learning
algorithms involve parallel processing and matrix operations, which GPUs excel at [20].
Having access to a GPU isn't always necessary for basic machine learning tasks, but it
prepares the system for future improvements, making it adaptable and forward-thinking.
The software environment, along with the hardware, is what makes the analytical process
work. Windows 10, Ubuntu-based Linux versions, Fedora, and macOS are all current
operating systems that work well with the programming tools that data scientists need.
You can install machine learning libraries, development environments, and GPU drivers
on these platforms. People generally choose an operating system based on how well they
know it [29]. Still, Linux-based systems are popular in research settings because they are
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flexible and offer command-line tools. Windows and macOS, on the other hand, are easy
to use thanks to their graphical interfaces.

In this case, the best programming language for machine learning is Python 3.8 or
higher. Python is quite popular because it is easy to read, has a large user community, and
offers many specialised libraries [17]. It includes built-in functions and additional packages
that make it easier to work with data, visualise it, perform statistical analysis, and make
predictions. Its flexibility makes it useful for both beginners and advanced users, and it
may be used for school projects, professional research, and business applications [18]. To
use the machine learning workflow, you need a few Python libraries. Pandas is very
important for loading datasets, handling missing values, transforming data, combining
tables, and storing data in tables [61]. It has efficient data frames that look like
spreadsheets, making it easy to view and modify datasets like the Titanic or breast cancer
data sets that are often used in classification tasks [24]. NumPy provides sophisticated
arrays and math functions that enable many other libraries to work well with numbers.
Pandas and NumPy work together to make preparing data easy, which is often the most
time-consuming part of any machine learning project.

Scikit-learn is the main library for building and evaluating predictive models [28]. It
has implementations of many common methods, including logistic regression, random
forests, support vector machines, k-nearest neighbours, and more. You can also use the
library to split data into training and test sets, scale features, select variables, and evaluate
metrics such as accuracy, precision, recall, and confusion matrices [16]. It has a consistent
interface that makes it easy to try out alternative algorithms by changing just a few lines
of code while leaving the rest of the pipeline alone. To comprehend data patterns and share
results, visualisation is very crucial. People often use Matplotlib and Seaborn to create bar
charts, histograms, scatter plots, heatmaps, feature significance diagrams, and survival
analysis plots [22]. Researchers can identify patterns, outliers, correlations, and class
imbalances that might not be visible from looking at numbers alone by using visual
representations. In academic or professional settings, effective visualisation makes it easier
to understand, improves report quality, and helps people make decisions.

The development environment you choose affects how easy it is to code and analyse.
Jupyter Notebook and Google Colab are popular because they let you run code cells, see
the result of inline visualisations, and add explanatory text all on the same page [19] This
feature makes it easier to try things out a little at a time and write clear notes about what
you did. Google Colab also lets you run code in the cloud and access GPUs without
installing anything on your own computer [72]. This is great for people who don't have
much hardware. These settings are especially useful for students and researchers
preparing to give presentations, write reports, or work on group projects. Version control
systems make the project workflow even more reliable [12]. Git and sites like GitHub let
people keep track of code changes, revert to older versions, and collaborate without getting
confused. They help numerous contributors work together and save project repositories
securely in the cloud. Version control also helps researchers do good work by ensuring
their work is clear and can be reproduced [32].

Finally, the dataset you choose will determine the direction of the investigation [27].
The breast cancer dataset on Kaggle is a well-known benchmark for classification jobs in
medical prediction challenges. These datasets include clinical measurements or imaging
results and are useful for creating models that can distinguish between benign and
malignant cases. Using real datasets helps you better understand what you need to do to
preprocess data, consider ethical issues, and assess model validity. It also enables
comparison with published research results and drives the development of models that
are more precise or easier to understand. In short, a good machine learning environment
needs strong integration between hardware and software [15]. To meet computational
needs, a computer requires sufficient processing power, memory, storage, and GPU
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acceleration. Operating systems, Python programming tools, specialised libraries,
visualisation packages, interactive notebooks, version control platforms, and benchmark
datasets all work together to create an ecosystem that supports the development of a
project from start to finish [23]. With these parts set up correctly, students and researchers
can easily uncover data-driven insights, build predictive models, and make a real
difference in solving problems in fields like healthcare analytics and survival prediction.

Diagrams Block diagram

Load and Preprocess Data - Build Neural Network Model - Compile the Model

!

Analyze Results - Evaluate Model - Train the Model

Figure 1. Workflow For Machine Learning Based Breast Cancer Detection.

Figure 1 presents a data flow diagram for using the Logistic Regression technique to
develop a prediction model. The Dataset is where raw data is first collected and stored
[60]. Then, the data undergoes the Data Pre-processing phase, where it is cleaned,
transformed, and organised so it can be used. During the Data Analysis phase, exploratory
data analysis (EDA) is used to identify patterns and relationships that can improve the
model's feature selection [58]. The processed data is then used to train numerous decision
trees in the Random Forest Algorithm. This makes predictions more accurate. In the
Results Analysis phase, these predictions are revisited to determine what the model's
results mean. Finally, evaluation metrics such as accuracy and precision are used to assess
how well the model performs. This completes the process of turning raw data into useful

information [71].
@eu dataset
|
-——'—/

Traming set (70%) Data prep ing Testing set (30%)

Architecture diagram

Evalvate

L lo—ooeeeeee )
P 5

Figure 2. Logistic Regression Workflow for Breast Cancer Prediction.

The diagram shows how to use logistic regression (LR) to predict breast cancer using
machine learning [59]. The method begins with a cleaned breast cancer dataset. We divide
the preprocessed data into two groups: 70% for training and 30% for testing. The training
data is used to improve the logistic regression model [57]. After tuning, the model is
evaluated using metrics, and then predictions are generated on the test set. The model's
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performance is assessed, and subsequent parameter adjustments may be implemented to
improve its efficacy (Figure 2).

2. Methodology
Packages and Algorithms

The suggested approach to predicting breast cancer requires a systematic process for
gathering, cleaning, training, and testing models on the data [80].

Pandas is a powerful Python library for working with and analysing data [84]. It is
built on NumPy and provides data structures such as Series (1D) and DataFrames (2D),
which are necessary for cleaning, organising, and analysing data. In this project to estimate
who would survive the Titanic, Pandas is mostly used to import the dataset, handle
missing values, and transform the data through filtering, grouping, and merging [77]. The
Titanic dataset is usually in CSV format and is loaded into a Pandas DataFrame, which can
then be modified to prepare it for machine learning operations. Some important functions
are read_csv() for loading data, fillna() for handling missing values, and groupby() for
aggregating data.

NumPy is a main library for doing math in Python. It supports arrays and matrices
and includes many math functions that work with various data structures [75]. NumPy is
very important for doing math and manipulating arrays quickly in machine learning.
Pandas is a higher-level tool for working with data, but NumPy handles the calculations
behind the scenes to speed them up [83]. In the Titanic project, NumPy is used to identify
the median or mean for imputing missing values, produce statistical summaries, and speed
up calculations involving numerical features such as age and fare [79].

Scikit-learn (sklearn): Scikit-learn is a very popular library for machine learning in
Python. It offers many algorithms for both supervised and unsupervised learning, making
data mining and analysis easy and quick. Scikit-learn is a key part of the Titanic survival
effort since it uses the Random Forest technique to generate the predictive model [73]. It
also includes tools for cleaning data, splitting datasets, training the model, generating
predictions, and evaluating how well the model performs. Some of the most important
Scikit-learn modules utilised in this project are:

e Logistic Regression Classifier: This is used to create and train the Logistic regression
model.

e Train-test split: This is how to split the dataset into training and test sets.
accuracy_score, precision_score, recall_score, f1_score: To check how well the model
works using different metrics.

e One Hot Encoder: This converts categorical variables into numerical values so
algorithms can work with non-numeric inputs more easily.

e SimpleImputer: To deal with missing values in the dataset, like utilising the median for
ages that are missing.

Matplotlib: Matplotlib is a full library in Python for making static, animated, and
interactive graphics [81]. It is quite helpful for making graphs that let you analyse data and
test models. Matplotlib is used in the Titanic project to show key relationships in the data,
such as how survival rates differ by gender, class, or age group. You may also use it to
construct bar charts, histograms, and scatter plots to understand the data better before you
start building a model [76]. You may use Matplotlib to plot confusion matrices, ROC
curves, and feature significance charts to better how well the model performs and what its
results mean.

Seaborn is a library for visualising data built on top of Matplotlib [85]. It gives you a
high-level way to make statistical visuals that are both pretty and useful. Matplotlib lets
you construct plots in many ways, but Seaborn makes it easier to create complex
visualisations and is widely used for exploratory data analysis. Seaborn is used in this
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project to make charts that show how different factors, including gender, passenger class,
or age groups, affect survival [74]. Seaborn can make heatmaps for confusion matrices, bar
graphs to show the importance of each characteristic, and distribution plots to examine
data patterns. Seaborn makes it easier to see the connections and patterns in the data by
using more attractive visuals [82].

Algorithms used in the system may include:

e Linear Regression: A basic approach that uses a linear equation to show how the
dependent and independent variables are related. This is the starting point for making
predictions.

e Decision Trees: These models present decisions as a graph, allowing you to see non-
linear relationships. They are easy to understand and help you figure out just how
important each feature is.

e Logistic regression t: A method that combines many methods to improve accuracy and
prevent overfitting, making it strong against noise in the data.

e Gradient Boosting: Another ensemble method that improves predictions over time by
combining several weak learners. This generally leads to better results.

e Support Vector Machines (SVM): A flexible method that works well in high-
dimensional spaces and can find complex relationships using its kernel technique.

Scikit-learn is a full package that lets you try out different machine learning
algorithms and see how well they work [78].

3. Results and Discussion

The Data Collection Module focuses on preparing the Titanic dataset for analysis
[91]. We use pandas.The read_csv() function is used to import this Kaggle dataset into a
Pandas DataFrame. This arranges the data in a structured, table-like way. Functions like
df.head() and df.info() are used to look at the data for the first time [96]. This helps you
understand the dataset's structure, identify missing values, and identify important
attributes such as age, gender, class, and survival status [88]. In the preprocessing phase,
missing data, especially in columns such as "Age" and "Cabin," are identified and recorded
for later use. This module ensures the dataset is loaded correctly, checked for quality, and
ready for further analysis in the machine learning process [94].

Input

© input_data = (13.54,14.36,87.46,566.3,0.09779,0.08129,0.06664,0.04781,0.1885,0.05766,0.2699,0.7886,2.058,23.56,0.008462,0.0146,0.02387,0.01315,0.0198,

# change the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the numpy array as we are predicting for one datapoint
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction(@] == 0):
print('The Breast cancer is Malignant')

else:
print(‘The Breast Cancer is Benign')

Figure 3. Input.

The initial step in prepping this breast cancer prediction project was to load the
dataset from a CSV file into a Pandas DataFrame [93]. One important step was dealing
with missing numbers. The median value was used to fill in the "Age" column, and the
mode was used to fill in the blank entries in the "Embarked" column. To improve the
model's performance, extraneous columns were removed from the dataset [86].
Categorical variables like "Sex," "Embarked," and "Pclass" were turned into dummy
variables by one-hot encoding so that the machine learning algorithm could understand
them correctly [97]. Also, a new feature called "AgeBin" was created by grouping ages into
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categories like "Child," "Adult," "Middle-Aged," and "Senior." This extensive preparation
ensured the dataset was well-structured and ready for analysis, thereby improving the
performance of the following model (Figure 3).

Output
5y 1]
The Breast Cancer is Benign

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:493:
warnings.warn(

Figure 4. Output.

The Model Training Module (‘'model_training.py’) is responsible for training and
testing a linear regression model on the breast cancer dataset [92]. It has two main
functions: ‘train_model(X, Y)’, which takes the feature variables (X) and the target variable
(Y) as inputs to train a linear regression model and returns the trained model; and
‘evaluate_model(model, X_train, Y_train, X_test, Y_test)’, which checks how well the
model works by calculating and returning the accuracy on both the training and test
datasets [89]. This module is very important for assessing how well the model performs
on data it hasn't seen before, which helps the breast cancer prediction project perform
better overall (Figure 4) [95].

Evaluating Feature Importance

Classes 2

Samples per class 212(M),357(B)
Samples total 569
Dimensionality 30

Features real, positive

Figure 5. Feature Importance table.

The Prediction Module uses the trained linear regression model to predict new input
data in the breast cancer prediction project [98]. It has the function
‘make_prediction(model, input_data)’, which takes a trained model and a tuple of new
input features. This function takes the input data, uses the model to generate a forecast,
and returns the predicted class label, indicating whether the cancer is malignant or benign
[90]. This module is very important for turning the model's insights into actions that can
be taken right away [87]. It helps with making clinical decisions and managing patients
(Figure 5).

4. Conclusion

In this breast cancer prediction project, we developed a thorough, organised
approach to using machine learning to determine whether cancer is likely to be malignant
or benign based on several medical data features. The study used linear regression as its
main predictive model and the well-known breast cancer dataset from the "sklearn"
package. We used modular programming ideas to break the project down into three parts:
the Data Collection Module, the Model Training Module, and the Prediction Module. This
format made the code easier to read and maintain, and to test and debug. The Data
Collection Module was very important for loading and prepping the dataset. It ensured
the data was clean and well-organised so it could be analysed. It provided important
summary statistics that helped us understand how the data was distributed and what it
looked like. We used a strong dataset split to train the linear regression model in the Model
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Training Module. This allowed us to examine how well the model performed on both the
training and test sets. This test was very important for assessing how accurate the model's
predictions were and how well it would perform with new data.

The Prediction Module enabled real-time predictions by using user-provided input
features to estimate the likelihood that breast cancer was malignant or benign. This turned
the model's capabilities into useful tools. This feature is especially important in clinical
settings, as timely and precise predictions can help healthcare workers make informed
decisions about patient care. The study shows how well machine learning can be used to
make medical predictions and how important it is to preprocess data, test models, and
make accurate forecasts in real life. Future work might include exploring more advanced
techniques and improving the model's accuracy by adding more datasets, tuning
hyperparameters, and applying feature engineering. We can help improve diagnostic tools
by continually refining our method. This will help patients with breast cancer get better
healthcare results. This effort lays the groundwork for further research and the use of
machine learning in medicine, showing how technology and healthcare are becoming
increasingly connected.
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