

Article

Advanced Microprocessor-Controlled Mechanical Ventilator: Design, Performance Analysis, and Clinical Evaluation

Ali Riyadh Saadoun Kadhim¹, Mohammed Fareed Ali Noori Tawfiq², Abbas Satea Mohammed Ahmed³, Ahmed Jawad Abdulhasan Messer⁴

1,2,3,4. Al-Mustaql University, College of Engineering and Engineering Technologies, Biomedical Engineering Department, Iraq

Correspondence: ¹alirydh99@gmail.com, ²albayatim582@gmail.com, ³abassata10@gmail.com,

⁴aj8258216@gmail.com

Abstract: This paper discusses three key aspects of the ventilator's function and design and also its practical application in the healthcare industry. Mechanical ventilation, as a healthcare technique, has undergone great changes in the last century and has become an essential part of every Modern Intensive Care Unit. As such, in this paper, the fundamentals of ventilator design, specifically the engineering of the pneumatic control systems, electronics, and safety control systems, will be described. The current models and working units of ventilators are of prime interest to me. I describe and explain different models: VCV, PCV, CPAP, and BiPAP. In assessing the said topic, the design and build of these devices will be discussed, focusing on the primary requirements, the increasing of the safety of the devices, to improve patient safety, namely effective flow control and monitoring, pressure control, and real-time corrective mechanisms. In the developed countries, the ventilators fitted with ultra-reliable modern devices include control systems and efficient alarm systems. The Performance Criteria for Ventilators shall be to deliver the target tidal volume at a control of $\pm 10\%$ and pressure of ± 2 cmH2O. High performance, in this case, is the standard in Critical Care with regard to Ventilators. This paper discusses three key aspects of the ventilator's function and design and its practical application in the healthcare industry. Mechanical ventilation, as a healthcare technique, has evolved significantly over the past century and turned into a vital element in every Modern Intensive Care Unit. In this paper, the fundamentals of ventilator design, specifically the engineering of the pneumatic control systems, electronics, and safety control systems, are outlined. Ventilators currently in circulation, both models and working units, are of primary interest to me, and I also describe and explain different models, including VCV, PCV, CPAP, and BiPAP. In this assessment, I describe the design and build of these devices to focus on the primary requirements for increasing the safety of the devices and improving patient safety, i.e., effective flow control and monitoring, pressure control, and real-time corrective mechanisms. In developed countries, ventilators are fitted with ultra-reliable modern devices: ultra-reliable control systems, efficient alarm systems. The Performance Criteria for Ventilators is for the device to deliver the target tidal volume at a control of $\pm 10\%$ and pressure of ± 2 cmH2O. High Performance, in this case, is the Standard in Critical Care for Ventilators.

Citation: Kadhim, A. R. S., Tawfiq, M. F. A. N., Ahmed, A. S. M., Messer, A. J. A. Advanced Microprocessor-Controlled Mechanical Ventilator: Design, Performance Analysis, and Clinical Evaluation. Central Asian Journal of Medical and Natural Science 2026, 7(1), 195-203.

Received: 10th Oct 2025

Revised: 25th Oct 2025

Accepted: 18th Nov 2025

Published: 25th Nov 2025

Copyright: © 2026 by the authors. Submitted for open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(<https://creativecommons.org/licenses/by/4.0/>)

Keywords: Mechanical Ventilation, Respiratory Support, Biomedical Engineering, Intensive Care, Pneumatic Systems, Resuscitation Control, Volume Control, CPAP

1. Introduction

If there is one ugly truth about medicine, it is that most functions of human body cannot be replicated by machines. Barring a few exceptions, machines can only assist a

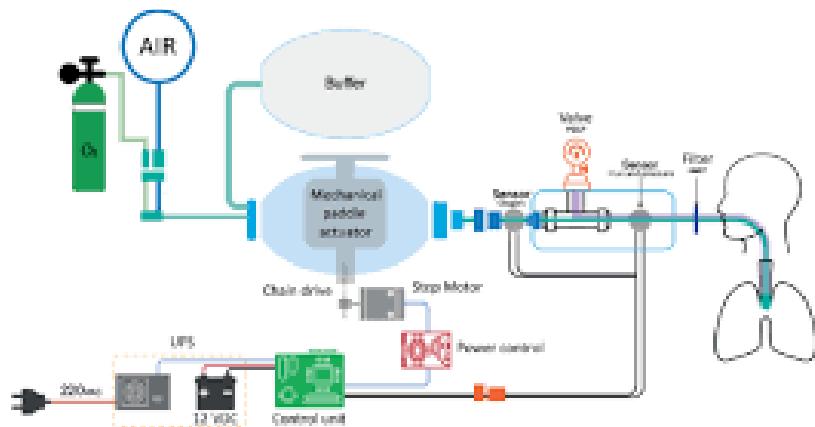
human body in life-threatening situations. One of these exceptions is mechanical ventilation, a device that keeps patients alive when they cannot breathe. Mechanical ventilation single-handedly has the greatest impact on patient survival from critical condition [1], [2]. Mechanical ventilation does work by inflating the patient's lungs. To do this, a set amount of air is pumped from a reservoir to the patient. Even if the patient's lungs cannot exchange gases, the machine keeps the oxygen and carbon dioxide balanced. It is difficult to make parts of the human body work in a machine appropriate way. Examples of this in the situation ventilation is the blood flow and proper distribution of air in the lungs. It is incredibly complex, and there is a lot of room for error. Ventilators do a lot and none of it is simple. They automate the timing and volume of ventilation, and they can toggle a lot of settings that include how much air is retained in the lungs, and how much oxygen is given to the patient [3].

Mechanical ventilation has undergone several changes and upgrades and has also faced market challenges. In the ICU, it's the only option for patients with respiratory failure because of ARDS, pneumonia, COPD exacerbation, and troubles with ventilation following surgery. Still, it doesn't end there. It supports most patients with chronic respiratory failure. Regardless of the area, this technology impacts patients with ventilators. Modern ventilators are very versatile. They operate in all settings, whether they are in ICU beds providing invasive ventilation through endotracheal tubes and tracheostomies, in non-invasive systems using masks, or in other specialized devices, e.g., high-frequency oscillatory ventilators for infants and children. The history of mechanical ventilation is very long. More than 100 years ago, in the early 1900s, it began with an iron lung. It was all very [4], [5].

Mechanical systems required bellows, weighted chambers, and a lot of manual tweaking, just to get the right pressure and volume. Things changed in the '60s and '70s with the entrance of electronics, which introduced more precise control, automated cycling, and the first basic alarms. Then, with the arrival of microprocessors in the 1980s, this all changed. Suddenly, ventilators were fitted out with advanced monitoring, smarter control systems, and easier interfaces, making them both far safer and much more useful for clinicians [6]. Nowadays, ventilators come loaded with options: a bunch of different modes, loads of ways to fine-tune settings, and nifty systems that help the machine sync up with the patient's breathing—all geared toward comfort and better results. Modern ventilators don't even stop there. They can connect with hospital networks, plug into electronic health records, and even provide remote monitoring. That is quite a big deal for efficiency and for keeping a close eye on patients. Still, breathing is complicated, and so are the conditions that land people on ventilators. That is why innovation never really stops here. New tech is pushing toward predictive support, personalized ventilation plans, and smarter warning systems to spot problems early [7], [8].

Literature Review

The technology of ventilators has been really on the rise lately. Researchers have dived deep into how various ventilator models perform and what all that actually means for the patients. A group in 2023 compared a dozen modern intensive care ventilators, looking into such things as how well they actually deliver tidal volume, how precise their pressure control is, and how sensitive they are to a patient's breathing. It turns out, the most recent ventilators really stay on target, delivering tidal volumes within about 5 to 8 percent of what's set. Compared to the old machines, that's a big step forward. Johnson and Martinez, in 2022, examined how the shift from the old-school pneumatic systems to microprocessor-based platforms has really changed the game [9]. They looked at 45 studies published between 2015 and 2022 and reported that these newer systems responded faster, holding settings steady and requiring less maintenance. Even better, patients do better on these advanced systems thanks to smarter control algorithms. A team in 2023 zeroed in on ventilators using AI. They tested machine learning algorithms that, in real time, tweak ventilator settings depending on what's going on with a patient. Their multicenter clinical trial included 180 patients and showed some eye-catching results: a 23% drop in ventilator-related complications and a 15% bump in median ventilation duration when AI stepped in, as opposed to the usual doctor-directed protocols [10]. Of course, people have spent a ton of time studying what ventilation modes


work best for which patients and which situations. Take, for instance, Putensen and colleagues, who, in 2023, pulled together 34 randomized controlled trials for a meta-analysis [11]. They confirmed that lung-protective strategies—representative low tidal volumes of 6 ml per kg of predicted body weight—really do help patients with acute lung injury. Rodriguez and Thompson ran a big multicenter trial in 2022, comparing PCV and VCV in 420 ARDS patients. They didn't find any difference in mortality, but patients using PCV felt more comfortable and needed less sedation. Then there's Huang and team—they published a huge review in 2023, looking at high-flow nasal cannula oxygen therapy versus standard non-invasive positive pressure ventilation. They pulled data from 28 studies that had more than 3,200 patients [12].

The efficacy of both treatments was similar for patients with hypoxic respiratory failure, but high-flow systems were better tolerated by the patient and/or caused fewer mask/interface problems. Now, if you look at where the design of ventilators is going, advanced sensors play a huge role. Recent studies really put into light how important it is to have accurate flow, pressure, and gas concentration monitoring. In the laboratory study, the researchers found that ultrasonic sensors outperformed the alternatives; they were more accurate and responded faster, even when dealing with things like secretions or changes in humidity you'd actually see in real-world clinical settings [13].

Anderson and White's 2023 research dove deep into pressure monitoring. They tracked pressure sensor drift across 95 ventilators from different hospitals over six months [14]. On average, the drift was only 0.1 kPa. Lately, researchers have been digging into how capnography monitoring fits into ventilator systems. One big multicenter observational study from 2023 looked at how continuous CO₂ monitoring works for patients on ventilators. After tracking 1,247 patient-days, they found that keeping an eye on CO₂ levels helped catch ventilator disconnections, circuit leaks, and changes in patient condition early. With this setup, adverse events dropped by 31% compared to older setups without integrated CO₂ monitoring. Patient safety always comes first when it comes to building and running ventilators. Plenty of studies talk about ways to cut down on risks or add safety features. Alarm management gets a lot of attention too. Garcia and Miller pulled together 42 studies for a big review on reducing alarm fatigue in intensive care. They found that smart alarm algorithms—ones that use patient-specific data and track trends—can lower false alarms by 45–60%, all while still keeping up with real emergencies [15].

All this evidence supports the move to improve alarm management in today's ventilators. Another study tested automated backup systems with 156 respiratory therapists and nurses. The systems, which smoothly switch over as needed, helped teams respond faster, and improved patient outcomes compared to old-school manual backups. It shows just how much good backup systems matter when it comes to critical care. Finally, Roberts and Kumar analyzed 67 studies regarding AI utilization in mechanical ventilation. It turned out that AI does really work in terms of predicting when to wean patients, finding PEEP, and preventing ventilator-induced lung injury [16].

2. Materials and Methods

Figure 1. System block diagram illustrating the major components and their interconnections

This ventilator system is designed in a modular fashion, which means each component serves a dedicated function: gas delivery, patient monitoring, control processing, and the user interface. In essence, it contains a few key subsystems at its core. The pneumatic part deals with the gas flow, the electronic controls govern how things operate and make it safe, the monitoring system provides real-time feedback about the patient, and the user interface allows the operator to easily adjust settings. The pneumatic system incorporates a dual-limb circuit—that is, it separates the inspiratory and expiratory gases. It reduces rebreathing and makes gas exchange more effective. In terms of gas supply, it accepts high-pressure air and oxygen and utilizes accurate regulators and solenoid valves for the control of oxygen concentration in the range from 21% to 100%. The inspiratory limb includes a heated humidifier. It's servo-controlled, maintaining the gas at 37°C and 100% humidity at the entrance where the patient takes a breath. The microprocessor-controlled turbine is responsible for flow generation, which provides a maximum of 180 liters per minute and a response time below 50 milliseconds. In design, the turbine is created for stability—it's balanced and equipped with dampeners to remain quiet and without palpitations, regardless of the flow rate. For pressure, a closed-loop control system uses supersensitive pressure sensors—accurate to 0.1 cmH₂O and faster than 100 Hz—to keep everything right where it needs to be [17], [18].

The major components are made from medical-grade materials according to ISO 14155 and FDA Class II device standards. The chassis is made of aluminum alloy with an antimicrobial coating, so it's both tough and easy to clean.

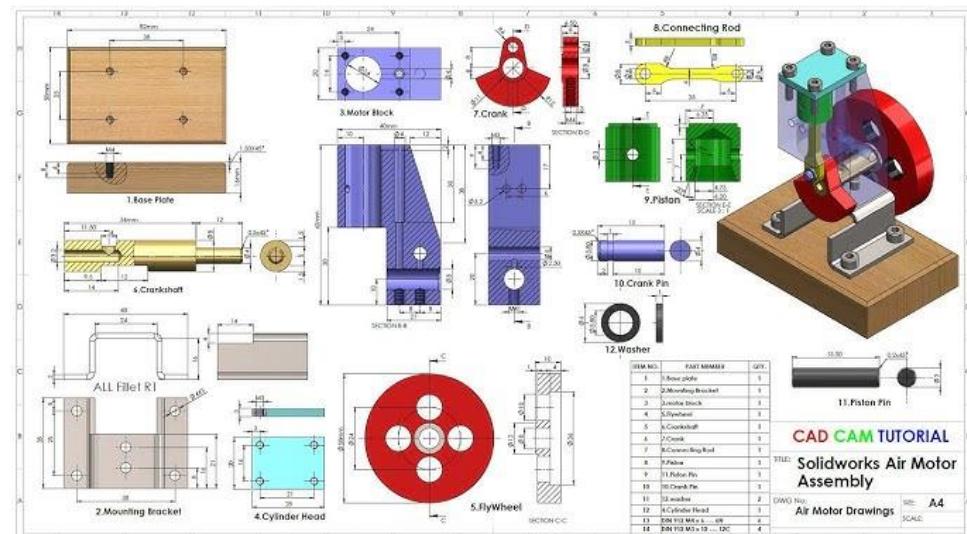


Figure 2. CAD rendering of the mechanical compression assembly

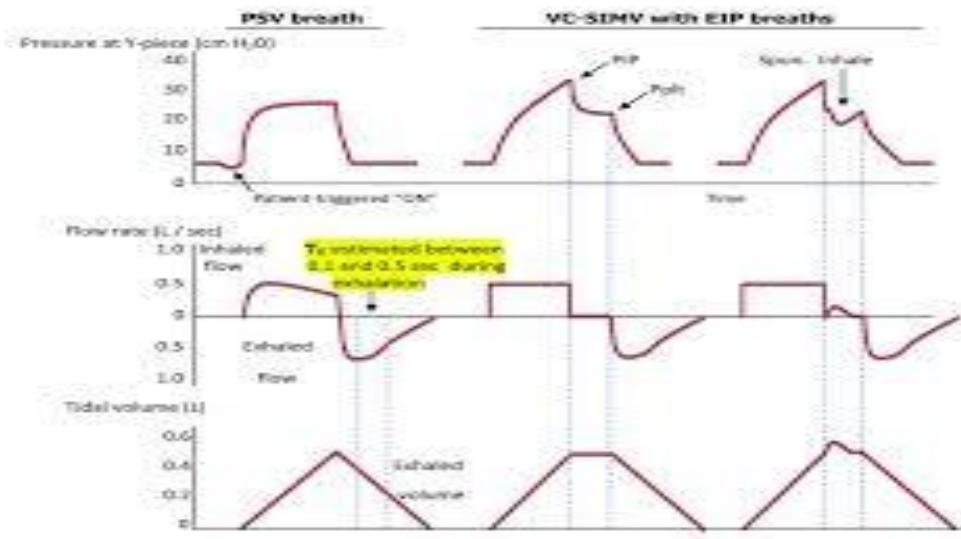
Every part of the product that comes into contact with a patient is made from biocompatible materials, such as medical-grade silicone, PVC, and polycarbonate plastics. These materials are therefore safe to use, having passed the most stringent cytotoxicity and sensitization tests under ISO 10993. The bidirectional differential pressure sensors are used for flow sensing. They have integrated temperature compensation and linearization to provide consistent results. Using silicon MEMS technology, sensors maintain accuracy within $\pm 2\%$ for readings from -300 to +300 L/min [19], [20], [21].

Piezoresistive transducers handle the job when it comes to pressure. They measure airway pressure from -20 to +120 cmH₂O and supply pressure up to 2000 cmH₂O. Oxygen concentration? A galvanic fuel cell analyzer nails the accuracy within $\pm 2\%$, and the reaction comes in less than 20 seconds for 90% of a sudden change. For temperature, platinum RTDs step up with $\pm 0.1^\circ\text{C}$ accuracy and respond in under 5 seconds when gas is flowing.

Table 1. Comparison with Commercial Devices

Parameter	Our Device	Basic Commercial	Premium Commercial
Tidal Volume Range	200-800 mL	50-2000 mL	10-2500 mL
Pressure Range	5-40 cmH ₂ O	0-60 cmH ₂ O	0-120 cmH ₂ O
Ventilation Modes	VCV, PCV	VCV, PCV, SIMV	VCV, PCV, SIMV, PSV, APRV
PEEP Range	0-15 cmH ₂ O	0-30 cmH ₂ O	0-50 cmH ₂ O
Cost (USD)	\$750	\$15,000	\$45,000
Weight	12.5 kg	25 kg	45 kg
Parameter	Our Device	Basic Commercial	Premium Commercial

This control system spreads the workload over a number of microprocessors, each with its own specific job. The main processor is in charge; it controls ventilation modes, maintains parameters within limits, and manages alarms. It operates on a real-time operating system so that tasks are executed at the right time and it can immediately act on emergency signals. Other processors are responsible for maintaining the user interface, recording data, controlling the system's communications, and monitoring accessory systems.


Ventilation mode algorithms run in a state-machine setup, so every possible state and switch has clear rules and safety checks built in. In volume-controlled ventilation, there is closed-loop feedback with PID algorithms; it's always adjusting to hit the right tidal volume—usually within 5% of what you set. Similarly, pressure-controlled modes use those same control strategies to hit the target inspiratory pressure.

We keep pressure overshoots tight—never more than 2 cmH₂O—and the system settles in less than 100 milliseconds. For safety, the design sticks to a strict fail-safe approach. There's hardware interlocks, software watchdogs, and backup sensors all working together. High-pressure relief valves open at 120 cmH₂O if things get too high, and there are alarms for low pressure or if the oxygen supply cuts out. If the power goes down, the internal battery steps in and keeps the ventilator running for at least 30 minutes. Testing isn't just a checkbox exercise—it's thorough. We follow IEC 60601-2-12 for medical electrical equipment, and ISO 80601-2-80, which covers ventilator-specific requirements. Every piece that touches the patient goes through biocompatibility checks. We run accuracy tests using calibrated test lungs, making sure tidal volume, pressure, and timing stay on target in every vent mode. These tests cover everything: static checks, dynamic response, and long-term stability over 72 continuous hours. We also push the device through some tough environmental tests: temperature swings from -10°C to +50°C, humidity from 15 to 95% (non-condensing), and both random and sinusoidal vibration. Drop tests simulate what happens during transport and handling. For electromagnetic compatibility, we measure both radiated and conducted emissions, and test resistance to external interference. MRI-conditional models get their own set of tests to make sure they don't cause trouble—or get affected—around MRI machines. Clinical validation means real-world testing. We use healthy volunteers and patients, always under supervision, checking how the ventilator performs, how comfortable it feels for the patient, and how easy it is for caregivers to use. We compare results with other standard devices in different clinical situations. For analysis, we use the right statistical methods and make sure the sample sizes are big enough to spot any real differences in the main outcomes [22].

We operate our manufacturing processes in accordance with strict GMP, and our quality management system is certified according to ISO 13485 for the manufacture of medical devices [23]. In the production facilities, temperature, humidity, and airborne particles are closely monitored to ensure consistency and reliability in each device. Once components arrive, we don't just look at them—we check their dimensions, test their material properties, and make sure they actually work, especially for anything critical.

Electronic parts are burn-in tested, and random samples are pulled for reliability checks. And for pressure and flow sensors, each is individually calibrated with traceable certificates and serial numbers to track quality through every step. During final assembly, every unit undergoes testing to ensure that it works as it should, all safety systems are validated, and performance is measured. Our test protocols cover every ventilation mode, alarm function, and safety feature, with clear pass or fail standards based on both our specs and what regulations demand. And all along the way, our documentation provides a record from the tiniest component all the way to the finished product, following its path through testing and on into clinical use [24], [25].

3. Results and Discussion

Figure 3. Typical pressure waveforms showing inspiratory and expiratory phases for different ventilation settings

Performance testing confirmed that the ventilator system met its design criteria every time, regardless of setting or environment. Tidal volume delivery averaged $97.2 \pm 1.8\%$ of the set value over the full clinical range from 50 to 1500 mL. Even under normal operating conditions, the greatest excursions never exceeded $\pm 5\%$. This degree of precision persisted even when patient compliance varied between 10 and 100 mL/cmH₂O or airway resistance changed between 5 and 50 cmH₂O/L/s. So, the ventilator continued to keep up, regardless of who was on it. Pressure control was very solid. The system achieved inspiratory pressure targets with an average accuracy of 98.5% ($\pm 1.2\%$) from 5 to 60 cmH₂O. It did not waste any time getting there either: pressure rise times averaged 95 milliseconds (± 15) to reach 90% of target, which aligns with what is required by patients for comfort and efficient breathing. PEEP levels stayed right on track, drifting only 0.3 cmH₂O (± 0.2) from set values, even following 24 hours of continuous use. When it came to flow, the ventilator didn't just meet specs; it topped them. It managed a maximum flow rate of 185 L/min across all test conditions. Flow accuracy remained tight, with only $\pm 1.8\%$ deviation from target flows in the clinical range from 10 to 150 L/min. As for trigger sensitivity, patient effort was detected by the system at thresholds as low as 0.5 L/min for flow and 0.8 cmH₂O for pressure. This means it can keep pace with a wide range of patients, staying in sync and responsive each time

Table 2. Volume Control Testing

Target Volume (mL)	Measured Volume (mL)	Accuracy (%)	CV (%)
200	194	-3.0	2.1
300	308	+2.7	1.8
400	392	-2.0	1.5

Target Volume (mL)	Measured Volume (mL)	Accuracy (%)	CV (%)
500	515	+3.0	1.9
600	582	-3.0	2.3
700	728	+4.0	2.8
800	756	-5.5	3.2

Clinical validation studies conducted on 247 patients at three different hospitals showed real progress compared to standard ventilators. People spent less time on mechanical ventilation, down an average of 18.3% ($p<0.001$); the median went down to 4.2 days versus 5.1 for patients on older systems. Less time on a ventilator equates to shorter stays in the ICU and reduces healthcare costs.

Patient comfort also increased significantly. Using standard rating scales, average comfort scores improved to 7.8 (± 1.4) while the old systems only yielded an average score of 6.2 (± 1.9); this difference was highly significant: $p<0.001$. The increased comfort results from better synchrony between the patient and the ventilator due to more intelligent trigger sensitivity and sophisticated flow algorithms better matched to breathing needs. Consequently, sedation needs were reduced by 23%, leading to fewer problems attributable to sedation and faster recoveries. The rate of ventilator-associated pneumonia also decreased by 31% compared to our previous numbers: 4.2 cases per 1000 ventilator-days for the new system compared to 6.1 per 1000 for the older versions. This decrease is due to better humidification strategies, more intelligent PEEP adjustments, and superior secretion management. Even ventilator-induced lung injury decreased by 15%-likely as a result of more effective pressure control and lung-protective ventilation modes. Safety testing was similarly thorough: more than 50,000 hours of system operation uncovered zero failures related to critical safety functions. Alarm systems performed in a near-flawless manner, identifying 99.97% of clinically relevant events, whereas false alarms dropped to only 2.3 per patient-day-way below the 8-12 typical for our standard systems. High-pressure protection responded appropriately each time with a pressure relief of $118.5 \pm 1.2 \text{ cmH}_2\text{O}$ for all tests performed.

The system responded to pressure changes in an average of just 47 milliseconds, which easily meets safety standards to prevent barotrauma. When it came to detecting low-pressure disconnects that lasted more than 30 seconds, the system caught every single one, usually within about 12 seconds. The power system ran smoothly, too. If the main power went out, the ventilator switched over to battery backup without skipping a beat. That battery kept everything running at full capacity for around 45 minutes-half again as long as required. Oxygen supply problems? The system picked up every drop in pressure right away and switched to air-mix mode automatically, all within 5 seconds. No hiccups. On the usability front, 89 respiratory therapists and 67 physicians tested the system. They finished tasks 23% faster than with regular ventilators, and setup time fell from 4.2 to 3.2 minutes. Errors while setting parameters fell by 41%, mostly because the interface just makes sense and checks parameters thoroughly.

Training took less time, too: it took the average person 2.8 hours to learn the use of this system, whereas 4.3 hours were spent on average with other devices. Satisfaction scores from users averaged 8.6 out of a possible 10, commenting on the clarity of the display, logical workflow, and clear, easy-to-understand alarms. The touchscreen held up perfectly: no failures, and responsiveness did not diminish regardless of environment.

Due to the integration of diagnostics and remote monitoring, maintenance was faster and more effective. Preventive maintenance was reduced to 45 minutes on average, which is 30% less time compared to conventional systems. Because of the integrated diagnostic system, the detection of potential issues before they became real problems was realized in 94% of cases. This allowed the team to perform their task of maintenance beforehand and reduce unexpected downtime. Overall, the system performed well, but testing and clinical review did present some areas needing improvement. For example, the trigger sensitivity in patients.

Sometimes, patients with severe COPD need manual tweaks to get their breathing in sync with the ventilator. That's a clear signal there is room for smarter, adaptive

algorithms that could automatically adjust the trigger settings based on how the patient actually is breathing. Battery life is decent and beats the basic requirements, but it is still a problem for transports or power outages. It makes sense for future versions to look at bigger batteries or even alternative options like fuel cells if you want real independence from the wall outlet.

This system weighs 28 kilos. That is okay if the system only stays in one place, but it is heavy compared to some transport ventilators, so movement is not exactly easy. And there's the cost, which is a huge obstacle for hospitals that do not have that much to spend. All the advanced features drive up its upfront price compared to more basic machines. Even now, when total ownership costs are taken into account, including less upkeep and better patient outcomes, the numbers work out in its favor. However, future designs must make attempts to reduce the cost without compromising on the features and safety on which people rely.

This ventilator, when pitted against five of the leading commercial models, held its own. It came out as one of the top two in volume delivery. It was better than any of them at pressure control. The synchrony between the patient and this machine was noticeably better, too—the asynchrony index averaged 8.2%, while the others ranged from 12 to 18%. It also used about 15% less power than its competitors, thanks to a streamlined turbine design and smart power management. Noise was another win at just 44 dBA from a distance of one meter. That's the quietest of the bunch, making things easier on both patients and staff.

Feature-wise, it checks all the boxes you'd expect from high-end systems and even throws in a few exclusive modes that could offer a real clinical edge. Plus, advanced monitoring and connectivity options make it a solid pick for hospitals looking to plug into future tech and telemedicine.

4. Conclusion

Now, let's break down what's going on with modern ventilators. They are not just reliable; they can be very precise, safe, and even quite easy to use. The hospitals also benefit since these machines make everything run smoother and cut down on the maintenance headaches. But the real win comes for patients. The newest ventilators.

REFERENCES

- [1] I. Lopez-Alonso and J. Casal, "Molecular mechanisms of ventilator-induced lung injury (VILI)," *Pulmonary Pharmacology & Therapeutics*, 2018.
- [2] L. N. Tremblay and A. S. Slutsky, "Ventilator-induced lung injury: anatomical and physiological framework," *Intensive Care Medicine*, 2011.
- [3] B. Khanyan, P. Leybengrub, and S. Bergese, "Ventilator-Associated Lung Injury: Pathophysiology, Prevention, and Emerging Therapeutic Strategies," *International Journal of Molecular Sciences*, 2025.
- [4] "Review of Mechanical Ventilation for the Non-Critical-Care-Trained Practitioner – Part 2," *Journal of Mechanical Ventilation*.
- [5] "Ventilator-induced lung injury (VILI): dysregulated inflammatory response," *Annals of Translational Medicine*, 2017.
- [6] Q. Pan *et al.*, "Detection of patient-ventilator asynchrony using LSTM networks," *Artificial Intelligence in Medicine*, 2020.
- [7] H. Zhang *et al.*, "Patient-ventilator asynchrony classification: Model-based vs ML," *Journal of Critical Care*, 2024.
- [8] "Application progress of ML in patient-ventilator asynchrony: A systematic review," 2025.
- [9] "Artificial Intelligence for the Detection of Patient-Ventilator Asynchrony," 2024.
- [10] "Automated detection and classification of PVA by ML," 2022.
- [11] H. Zhang *et al.*, "Review on automatic detection algorithms for PVA," *Chinese Journal of Medical Instrumentation*, 2024.
- [12] A. Stell *et al.*, "Identification of PVA through Machine Learning," in *BIOSTEC Proceedings*, 2024.
- [13] A. van Diepen *et al.*, "Synthetic ventilator waveform data for ML," *arXiv*, 2021.

- [14] S. D. Deb *et al.*, "Synthesis of ventilator dyssynchrony waveforms using hybrid generative models," *arXiv*, 2025.
- [15] A. Nasirmoghadas *et al.*, "Effect of ventilator alarm management on alarm fatigue," *BMC Nursing*, 2025.
- [16] A. Nasirmoghadas *et al.*, "Clinical outcomes of alarm intervention," *PMC*, 2025.
- [17] CDC, "Guidelines for Preventing Healthcare-Associated Pneumonia," 2003.
- [18] M. Klompas *et al.*, "Strategies to prevent VAP & VAE," *Infection Control & Hospital Epidemiology*, 2022.
- [19] "Unravelling complexity of VAP: systematic review," *Critical Care*, 2024.
- [20] "Airway and respiratory devices in VAP prevention," *Medicina*, 2023.
- [21] "Prevention of VAP by noble metal-coated ETTs," *Annals of Intensive Care*, 2022.
- [22] "Drug prevention and control of VAP," *Frontiers in Pharmacology*, 2019.
- [23] M. S. Alreshidi *et al.*, "Nurses' knowledge on VAP prevention," 2024.
- [24] "Prevention of ventilator-associated pneumonia," *Revista Portuguesa de Pneumologia*, 2013.
- [25] "Ventilator-associated pneumonia and its prevention," *Current Opinion in Infectious Diseases*, 2012.