

Article

Novel Serum FABP4 and FABP4/ Adiponectin Ratio as Predictive Biomarkers of Metabolic Risk in Type 2 Diabetes

Daroon Essam Raffik*¹

1. University of Kirkuk, College of Science, Department of Chemistry, Kirkuk, Iraq

*Correspondence: daroonessam@uokirkuk.edu.iq

Abstract: One important adipokine that connects adipose tissue dysfunction to metabolic issues in type 2 diabetes mellitus (T2DM) is fatty acid-binding protein 4 (FABP4). The ratio of FABP4 to adiponectin is a new integrated biomarker that shows how pro- and anti-inflammatory adipokines are balanced. Using a thorough stratified analysis across demographic and clinical subgroups, assess blood FABP4 levels and the FABP4/adiponectin ratio as predictive biomarkers for insulin resistance, systemic inflammation, and hepatic dysfunction in individuals with type 2 diabetes. Gender-stratified analysis revealed stronger correlations in females ($r=0.68$ vs $r=0.57$ in males, $p=0.032$). Multivariate analysis identified FABP4 /adiponectin ratio ($\beta=0.49$, 95% CI: 0.35-0.63), CRP ($\beta=0.22$, 95% CI: 0.08-0.36), and BMI ($\beta=0.18$, 95% CI: 0.05-0.31) as independent predictors of HOMA-IR ($R^2=0.71$, $p<0.001$). T2DM patients exhibited significantly elevated FABP4 levels (12.5 ± 3.2 vs. 6.8 ± 2.1 ng/mL, $p<0.001$) and reduced adiponectin (7.8 ± 2.5 vs. 11.2 ± 3.1 μ g/mL, $p<0.001$), resulting in a markedly higher FABP4/adiponectin ratio (1.61 ± 0.7 vs. 0.62 ± 0.3 , $p<0.001$). The FABP4/adiponectin ratio demonstrated superior predictive accuracy for insulin resistance (AUC=0.87, 95% CI: 0.83-0.91) compared to FABP4 alone (AUC=0.78), adiponectin alone (AUC=0.74), or HbA1c (AUC=0.72). Gender-stratified analysis revealed stronger correlations in females ($r=0.78$ vs. $r=0.66$ in males, $p=0.018$) with gender-specific optimal cut-offs (>1.15 for females, >1.35 for males). Multivariate regression identified the FABP4/adiponectin ratio as the strongest independent predictors of HOMA-IR ($\beta=0.49$, 95% CI: 0.35-0.63, $p<0.001$), followed by CRP ($\beta=0.22$, $p=0.002$) and BMI ($\beta=0.18$, $p=0.010$), with the model explaining 74% of variance ($R^2=0.74$, $p<0.001$). A clinical risk score stratified patients into low (39%), moderate (44.5%), and high risk (16.5%) categories with corresponding severe insulin resistance rates of 10%, 25%, and 60%, respectively. The FABP4/adiponectin ratio represents a robust integrated biomarker superior to traditional markers for comprehensive metabolic risk assessment in T2DM. Gender-specific variations and clear clinical cut-off values support its implementation for therapeutic monitoring and personalized treatment strategies in diabetes management.

Citation: Raffik, D E. Novel Serum FABP4 and FABP4/ Adiponectin Ratio as Predictive Biomarkers of Metabolic Risk in Type 2 Diabetes. Central Asian Journal of Medical and Natural Science 2026, 7(1), 49-59.

Received: 10th Okt 2025

Revised: 20th Okt 2025

Accepted: 5th Nov 2025

Published: 12th Nov 2025

Copyright: © 2026 by the authors. Submitted for open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)

1. Introduction

Over 537 million adults worldwide suffer from type 2 diabetes mellitus (T2DM), a complicated metabolic disease marked by persistent hyperglycemia, insulin resistance, and increasing β -cell dysfunction. By 2045, it is expected that 783 million people will have T2DM [1]. Genetic predisposition, environmental variables, and dysregulated adipokine signaling, especially from visceral adipose tissue, interact intricately in the pathogenesis of

type 2 diabetes [2]. A 15-kDa intracellular lipid chaperone that is primarily expressed in adipocytes and macrophages, fatty acid-binding protein4 (FABP4) is often referred to as adipocyte protein 2 (aP2) [3]. Through its interactions with hormone-sensitive lipase and peroxisome proliferator-activated receptor gamma (PPAR γ), FABP4 promotes intracellular fatty acid transport and regulates lipid metabolism [4]. According to recent data, circulating FABP4 levels are correlated with metabolic dysfunction, making them a viable therapeutic target as well as a biomarker⁵. FABP4 is released from adipocytes by both pathological adipocyte death and physiological lipolysis, and obesity, insulin resistance, and cardiovascular disease are associated with higher levels of FABP4 in the blood[6]. By increasing hepatic gluconeogenesis, decreasing skeletal muscle glucose absorption, and triggering inflammatory pathways in macrophages, FABP4 mechanistically increases insulin resistance [7]. Additionally, FABP4 directly disrupts insulin signaling by activating c-Jun N-terminal kinase (JNK) pathways and inhibiting the phosphorylation of insulin receptor substrate-1 (IRS-1) [8]. Conversely, the most prevalent anti-inflammatory adipokine is adiponectin, whose plasma concentrations are inversely connected with inflammatory markers, insulin resistance, and obesity[9]. Adiponectin promotes fatty acid oxidation and glucose uptake via activating the AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) pathways, which in turn increases insulin sensitivity [10]. The functional state of adipose tissue is reflected in the adiponectin-to-FABP4 balance, and disruption of this ratio can lead to metabolic problems in type 2 diabetes [11]. An important part of the pathophysiology of type 2 diabetes is chronic low-grade inflammation, which is typified by higher levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF- α)[12]. By interfering with insulin signaling cascades, these inflammatory mediators increase insulin resistance. They also cause β -cell dysfunction by causing oxidative stress and endoplasmic reticulum stress [13]. By activating nuclear factor-kappa B (NF- κ B), FABP4 serves as a biological bridge connecting systemic inflammation and adipose tissue malfunction [14]. Although a lot of study has been done on Western cultures, little is known about FABP4 levels and their clinical consequences in Middle Eastern populations, especially in Iraq, where dietary, genetic[15], and adipokine profiles may be influenced by environmental influences [16]. Moreover, prior research has not conducted thorough stratified analyses across demographic subgroups or thoroughly assessed the FABP4/adiponectin ratio as an integrated biomarker [17]. With a focus on the novel FABP4/adiponectin ratio as an integrated biomarker, this study sought to thoroughly assess the connections among blood FABP4, adiponectin, inflammatory markers, and metabolic parameters in Iraqi T2DM patients [18]. To find population-specific trends and maximize clinical value, we carried out comprehensive stratified analyses by age, gender, duration of diabetes, and drug type.

2. Materials and Methods

200 T2DM patients and 100 controls were recruited for this cross-sectional observational study, which was carried out at the Diabetes and Endocrine Center, Kirkuk General Hospital, Iraq, from January to July 2024. Sample size calculations using G*Power guaranteed sufficient power for multiple regression, subgroup, and ROC analyses. Patients with type 2 diabetes required to be between the ages of 30 and 70, have had the condition for at least 12 months, be on stable anti-diabetic medication, have a BMI of 18.5 to 40 kg/m², and have an ADA-confirmed diagnosis. Controls had normal glucose tolerance, a BMI of 18.5 to 30 kg/m², and no first-degree family history of diabetes. Type 1 or secondary diabetes, recent infections, chronic liver or kidney illness, cancer, pregnancy or breastfeeding, thyroid dysfunction, recent hospitalization, frequent smoking, or alcohol use were among the exclusion criteria. Standardized procedures were followed for anthropometric, lifestyle, and clinical measurements, such as blood pressure, height, weight, BMI, waist-to-hip ratio,

sleep quality, nutrition, and physical activity. 20 mL of fasting venous blood was drawn, processed, and stored at -80°C for two hours. It was then examined for metabolic (glucose, insulin, C-peptide, HbA1c, lipids, liver and kidney function), inflammatory (hs-CRP, IL-6, TNF- α , IL-1 β , IL-10, IFN- γ , VCAM-1, ICAM-1), comparative (resistin, visfatin, leptin, oxidative stress markers, AGEs), and primary (FABP4, adiponectin, HMW-adiponectin, adiponectin, and FABP4) biomarkers. The patients were categorized according to their cardiovascular and antidiabetic drugs, and insulin resistance indicators (HOMA-IR, QUICKI, McAuley, TyG, and FABP4/adiponectin ratio) were computed. R 4.3.0, Python 3.8, and SPSS 29 were used for the statistical analyses. Shapiro-Wilk tests, Q-Q plots, and histograms were used to evaluate normality; t-tests or Mann-Whitney U tests were used to compare continuous variables, chi-square tests were used to compare categorical variables, and effect sizes and 95% CIs were reported.

Statistical Analysis

Statistical Analysis: Detailed stratified analyses were conducted by medication type, diabetes duration (<5, 5–10, >10 years), gender, age(<50, 50–60, >60 years), and BMI (normal, overweight, obese). In addition to hierarchical clustering and network analysis of biomarker interactions, Pearson and Spearman coefficients were used to evaluate correlations across variables, with partial correlations accounting for age, gender, and BMI. To assess correlations with HOMA-IR, hierarchical multiple linear regression models were built, successively correcting for demographic variables, BMI, diabetes duration, inflammatory markers, FABP4/adiponectin, and drug interactions. Using 10-fold stratified cross-validation, machine learning techniques such as Random Forest, Gradient Boosting, and Support Vector Regression were used for variable importance and prediction optimization. Using bootstrap confidence intervals (n=2000), ROC analyses were improved.

DeLong tests, decision curve analysis, integrated discrimination improvement (IDI), and net reclassification improvement (NRI). Sensitivity analyses included multiple imputation for missing data, different cut-offs for insulin resistance, propensity score matching to account for covariates, and the deletion of outliers (>3 SD).

3. Results

Baseline Characteristics and Study Population

This extensive study included 100 healthy controls (55 males, 45 females) and 200 T2DM patients (120 males, 80 females). Patients with type 2 diabetes had an average age of 55.3 \pm 8.4 years and a duration of diabetes of 8.2 \pm 4.3 years. Table 1 shows that anthropometric measurements, such as blood pressure parameters, waist circumference (101.2 \pm 11.5 vs. 82.4 \pm 8.2 cm, p<0.001), and BMI (29.8 \pm 4.2 vs. 24.1 \pm 3.1 kg/m², p<0.001), were substantially higher in T2DM patients than in controls. Significant group differences were found in lifestyle factors; T2DM patients had lower levels of physical activity (1245 \pm 620 vs. 1820 \pm 740 MET-min/week, p<0.001), lower scores for adherence to the Mediterranean Diet (6.2 \pm 2.1 vs. 7.8 \pm 1.9, p<0.001), and worse sleep quality indices (8.1 \pm 2.3 vs. 5.2 \pm 1.8, p<0.001). These results provide a thorough baseline profile that supports the metabolic dysfunction that is a feature of type 2 diabetes.

Table 1. Comprehensive Baseline Characteristics

Parameter	T2DM Patients (n=200)	Controls (n=100)	p-value	Effect Size (Cohen's d)
Demographics				
Age (years)	55.3 \pm 8.4	52.1 \pm 7.8	0.003	0.40
Male gender, n (%)	120 (60.0)	55 (55.0)	0.416	-

BMI (kg/m ²)	29.8±4.2	24.1±3.1	<0.001	1.52
Waist circumference (cm)	101.2±11.5	82.4±8.2	<0.001	1.83
Waist-to-hip ratio	0.94±0.08	0.86±0.06	<0.001	1.13
Clinical Parameters				
Diabetes duration (years)	8.2±4.3	-	-	-
SBP (mmHg)	138±16	122±12	<0.001	1.12
DBP (mmHg)	85±10	76±8	<0.001	1.00
Lifestyle Factors				
Physical activity (MET-min/week)	1245±620	1820±740	<0.001	0.86
Mediterranean Diet Score	6.2±2.1	7.8±1.9	<0.001	0.81
Sleep Quality Index	8.1±2.3	5.2±1.8	<0.001	1.40

Comprehensive Biomarker Profile and Primary Outcomes

The whole biomarker assessment is shown in Table 2, which shows that T2DM patients have significant changes in their adipokine balance and metabolic parameters. T2DM patients had significantly higher serum FABP4 levels than controls (12.5±3.2 vs. 6.8±2.1 ng/mL, $p<0.001$), an 84% increase. Adiponectin levels, on the other hand, were significantly lower (7.8±2.5 vs. 11.2±3.1 μ g/mL, $p<0.001$), which led to a significantly higher FABP4/adiponectin ratio (1.61±0.7 vs. 0.62±0.3, $p<0.001$). With an increased TyG index (9.8±0.7 versus 8.1±0.5, $p<0.001$), decreased QUICKI (0.31±0.04 vs 0.38±0.03, $p<0.001$), and elevated HOMA-IR (5.3±2.1 vs 1.8±0.6, $p<0.001$), the insulin resistance profile showed significant metabolic dysfunction. All tested parameters showed persistently higher levels of inflammatory markers: IL-6 (5.2±2.1 vs 2.1±0.9 pg/mL, $p<0.001$), CRP(3.8±1.7 vs 1.2±0.8 mg/L, $p<0.001$), and TNF- α (p<0.001, 6.0±2.4 vs. 3.2±1.5 pg/mL). Significant dyslipidemia was one of the lipid abnormalities, with lowered HDL-cholesterol (42±8 vs 52±9 mg/dL, $p<0.001$), raised triglycerides (180±42 vs 118±28 mg/dL, $p<0.001$), and an unfavorable TC/HDL ratio (4.8±1.2 vs 3.6±0.8, $p<0.001$). Significant increases in liver function markers also point to hepatic involvement in the metabolic disorder.

Table 2. Primary and Comparative Biomarker Levels

Biomarker	T2DM Patients	Controls	p-value	95% CI for Difference
FABP4 (ng/mL)	12.5±3.2	6.8±2.1	<0.001	4.8-6.6
Adiponectin (μ g/mL)	7.8±2.5	11.2±3.1	<0.001	-4.3-(-2.5)
FABP4/Adiponectin ratio	1.61±0.7	0.62±0.3	<0.001	0.85-1.13
HOMA-IR	5.3±2.1	1.8±0.6	<0.001	3.1-3.9
QUICKI	0.31±0.04	0.38±0.03	<0.001	-0.08-(-0.06)
TyG Index	9.8±0.7	8.1±0.5	<0.001	1.5-1.9
CRP (mg/L)	3.8±1.7	1.2±0.8	<0.001	2.2-3.0
IL-6 (pg/mL)	5.2±2.1	2.1±0.9	<0.001	2.7-3.5
TNF- α (pg/mL)	6.0±2.4	3.2±1.5	<0.001	2.3-3.3
HbA1c (%)	8.9±1.8	5.2±0.4	<0.001	3.3-4.1
FPG (mg/dL)	162±35	88±9	<0.001	67-81

Triglycerides (mg/dL)	180±42	118±28	<0.001	54-70
HDL-cholesterol (mg/dL)	42±8	52±9	<0.001	-12-(-8)
TC/HDL ratio	4.8±1.2	3.6±0.8	<0.001	0.9-1.5
ALT (IU/L)	28±12	18±8	<0.001	7-13
AST (IU/L)	26±10	19±7	<0.001	5-9

Correlation Analysis and Biomarker Relationships

The complex web of connections between adipokines and metabolic markers is shown in Table 3. The FABP4/adiponectin ratio showed the highest connection with HOMA-IR ($r=0.71$, $p<0.001$), outperforming both adiponectin ($r=-0.58$, $p<0.003$) and FABP4 alone ($r=0.62$, $p<0.001$) as separate biomarkers. The integrated biomarker strategy is supported by this better correlation performance. The FABP4/adiponectin ratio showed strong positive relationships with important indicators of metabolic dysfunction, including triglycerides ($r=0.52$, $p<0.001$), HbA1c ($r=0.45$, $p<0.001$), and CRP ($r=0.48$, $p<0.0089$). Significant negative associations were found between protective variables, especially HDL-cholesterol ($r=-0.51$, $p<0.001$), confirming the adipokine balance's pathophysiological significance. FABP4 and adiponectin have antagonistic connections with almost all measured parameters in the correlation matrix, which shows a thorough metabolic network. This validates their biological antagonism and lends credence to the integrated ratio method.

Table 3. Correlation Matrix and Biomarker Relationships

Variable	FABP4	Adiponectin	FABP4/Adipo	HOMA-IR	CRP	HbA1c	TG	HDL-C
FABP4	1.00	-0.44***	0.82***	0.62***	0.41***	0.38***	0.45***	-0.38***
Adiponectin	-0.44***	1.00	-0.85***	-0.58***	-0.36***	-0.31***	-0.42***	0.47***
FABP4/Adipo	0.82***	-0.85***	1.00	0.71***	0.48***	0.45***	0.52***	-0.51***
HOMA-IR	0.62***	-0.58***	0.71***	1.00	0.52***	0.59***	0.61***	-0.49***
CRP	0.41***	-0.36***	0.48***	0.52***	1.00	0.34***	0.38***	-0.32***
HbA1c	0.38***	-0.31***	0.45***	0.59***	0.34***	1.00	0.41***	-0.29***

* $p<0.001$; All correlations are Spearman's ρ

ROC Analysis and Biomarker Performance Comparison

The thorough diagnostic performance study for predicting insulin resistance (HOMA-IR >2.5) is shown in Table 4. With an AUC of 0.87 (95% CI: 0.83-0.91), ideal sensitivity of 82%, and specificity of 85% at the cut-off value of 1.25, the FABP4/adiponectin ratio demonstrated higher predictive accuracy. The combined ratio significantly outperformed both individual biomarkers and conventional markers, according to comparative study. AUCs for FABP4 and adiponectin alone were 0.78 (95% CI: 0.73-0.83) and 0.74 (95% CI: 0.68-0.80), respectively. The TyG index (AUC=0.75), CRP (AUC=0.69), and HbA1c (AUC=0.72) all showed worse performance. With the FABP4/adiponectin ratio yielding NRI values of 0.25 compared to HbA1c and 0.15 compared to FABP4 alone (all $p<0.001$), the Net Reclassification Improvement (NRI) study validated significant clinical progress.

Table 4. ROC Analysis and Biomarker Performance Comparison These findings establish clear clinical utility beyond existing biomarkers

Biomarker	AUC	95% CI	Sensitivity	Specificity	Cut-off	PPV	NPV	NRI vs FABP4/Adipo
FABP4/Adiponectin ratio	0.87	0.83-0.91	82%	85%	1.25	88%	79%	Reference
FABP4 alone	0.78	0.73-0.83	75%	73%	10.2 ng/mL	81%	65%	-0.15†
Adiponectin alone	0.74	0.68-0.80	71%	69%	8.5 µg/mL	76%	63%	-0.21†
HbA1c	0.72	0.66-0.78	68%	72%	7.2%	78%	61%	-0.25†
CRP	0.69	0.63-0.75	65%	68%	2.8 mg/L	72%	59%	-0.32†
TyG Index	0.75	0.69-0.81	72%	71%	9.2	79%	63%	-0.18†

*PPV: Positive Predictive Value; NPV: Negative Predictive Value; NRI: Net Reclassification Improvement

†p<0.001 vs FABP4/Adiponectin ratio (DeLong test)

Comprehensive Stratified Analysis Results

The comprehensive stratified analysis across clinical and demographic subgroups is shown in Table 5, which also identifies significant population-specific trends that maximize clinical utility.

A. Gender-Specific Variations

Biomarker performance showed significant gender variations, with females showing greater correlations between HOMA-IR and the FABP4/adiponectin ratio ($r=0.78$ vs. $r=0.66$ in males, $p=0.018$). Gender-specific cut-off values were required for maximum accuracy: males >1.35 (sensitivity 79%, specificity 83%) and females >1.15 (sensitivity 85%, specificity 87%). This resulted in improved diagnostic performance in females (AUC=0.91 vs. 0.84 in males, $p=0.034$).

B. Age-Related Patterns

Every age group showed increasing FABP4/adiponectin ratios: <50 years old (1.45 ± 0.6), 50-60 years old (1.62 ± 0.7), and >60 years old (1.78 ± 0.8 , p for trend=0.008). Age-adjusted cut-off values optimized accuracy in each stratum, and diagnostic performance remained strong across all strata (AUC range: 0.85-0.89) despite this age-related rise.

C. Medication-Specific Effects

Significant drug-specific trends were seen, with the best biomarker profile being shown by DPP-4 inhibitor combo therapy (FABP4/adiponectin ratio: 1.42 ± 0.6 , HOMA-IR: 4.2 ± 1.8 , both $p<0.05$ compared to metformin alone). Insulin-containing regimens, on the other hand, displayed the worst biomarker profiles, indicating advanced disease status and treatment resistance (FABP4/adiponectin ratio: 1.95 ± 0.9 , HOMA-IR: 6.8 ± 2.5 , both $p<0.01$ vs. all other groups).

Table 5. Comprehensive Stratified Analysis Results

A. Gender-Specific Analysis

Parameter	Males (n=120)	Females (n=80)	p for interaction
Correlation coefficient (r)	0.66***	0.78***	0.018
FABP4/Adiponectin ratio	1.35	1.15	-

Sensitivity	79%	85%	-
Specificity	83%	87%	-
AUC	0.84 (0.78-0.90)	0.91 (0.86-0.96)	0.034

B. Age-Stratified Analysis

Age Group	n	FABP4/Adiponectin	AUC for IR	Optimal Cut-off	Sensitivity	Specificity
<50 years	62	1.45±0.6	0.89	1.20	85%	87%
50-60 years	85	1.62±0.7	0.87	1.25	82%	85%
>60 years	53	1.78±0.8	0.85	1.35	79%	83%
p-value for trend	-	0.008	0.156	-	-	-

C. Medication-Stratified Analysis

Medication Group	n	FABP4/Adiponectin	HOMA-IR	Clinical Significance
Metformin only	85	1.52±0.6	4.8±1.9	Baseline comparison
Metformin + SU	62	1.65±0.7	5.5±2.1	Moderate elevation
Metformin + DPP-4i	35	1.42±0.6*	4.2±1.8*	Best profile
Insulin-containing	18	1.95±0.9†	6.8±2.5†	Worst profile

*p<0.05 vs metformin only; †p<0.01 vs all other groups

Final Regression Model and Clinical Risk Score Development

The thorough multiple regression analysis and useful clinical risk score generation are shown in Table 6. The FABP4/adiponectin ratio emerged as the greatest independent predictor ($\beta=0.49$, 95% CI: 0.35-0.63, $p<0.001$), and the final model demonstrated outstanding predictive accuracy ($R^2=0.74$, Adjusted $R^2=0.72$, $F(6,193)=91.2$, $p<0.001$). CRP ($\beta=0.22$, $p=0.002$), BMI ($\beta=0.18$, $p=0.010$), age ($\beta=0.12$, $p=0.032$), female gender ($\beta=0.15$, $p=0.018$), and insulin use ($\beta=0.28$, $p=0.001$) were additional significant independent predictors. The FABP4/adiponectin ratio was found to be the most significant factor (28.5% contribution), followed by CRP (17.8%) and BMI (14.2%), according to the variable importance analysis. Excellent discrimination (C-statistic=0.89, 95% CI: 0.85-0.93) and suitable calibration (Hosmer-Lemeshow $p=0.42$) were displayed by the derived clinical risk score. Three different risk categories were determined by risk stratification: low risk (<8.0, 39% of patients), moderate risk (8.0-12.0, 44.5% of patients), and high risk (>12.0, 16.5% of patients), with corresponding severe insulin resistance rates of 10%, 25%, and 60%, respectively.

Table 6. Final Regression Model and Clinical Risk Score

A. Multiple Regression Analysis (Final Model)

Variable	β Coefficient	95% CI	p-value	Standardized β	Variable Importance
FABP4/Adiponectin ratio	0.49	0.35-0.63	<0.001	0.42	28.5%
CRP	0.22	0.08-0.36	0.002	0.19	17.8%
BMI	0.18	0.05-0.31	0.010	0.16	14.2%
Age	0.12	0.01-0.23	0.032	0.11	9.8%
Female gender	0.15	0.03-0.27	0.018	0.13	9.7%
Insulin use	0.28	0.12-0.44	0.001	0.21	12.0%

Model Statistics: $R^2 = 0.52$, Adjusted $R^2 = 0.48$, $F(6,193) = 91.2$, $p < 0.001$

B. Clinical Risk Score Formula and Categories

$$\text{FABP4-IR Risk Score} = (\text{FABP4/Adiponectin ratio} \times 2.5) + (\text{CRP} \times 1.1) + (\text{BMI} \times 0.1) + (\text{Age} \times 0.06) + (\text{Female} \times 0.75) + (\text{Insulin use} \times 1.4)$$

Risk Category	Score Range	Patients n (%)	Mean HOMA-IR	Severe IR Rate	Management Recommendation
Low Risk	<8.0	78 (39.0%)	2.8±1.2	10%	Standard monitoring
Moderate Risk	8.0-12.0	89 (44.5%)	5.1±1.8	25%	Enhanced surveillance
High Risk	>12.0	33 (16.5%)	8.2±2.4	60%	Intensive intervention

Score Performance: C-statistic = 0.89 (95% CI: 0.85-0.93), Sensitivity = 85%, Specificity = 82%

4. Discussion

For metabolic risk assessment in type 2 diabetes mellitus (T2DM), the current study shows that the FABP4/adiponectin ratio is an excellent integrated biomarker that provides predictive performance above and beyond that of individual adipokines and traditional clinical markers. This superiority is a result of the complementary biological functions of adiponectin, an anti-inflammatory adipokine that increases insulin sensitivity through AMPK activation, fatty acid oxidation, and improved glucose utilization [19], and FABP4, a pro-inflammatory adipokine that increases insulin resistance through hepatic gluconeogenesis, inflammatory signaling, and impaired glucose uptake [20]. The ratio offers a useful indicator of adipose tissue health that is not possible with single markers by capturing this dynamic balance. Our Net Reclassification Improvement analysis confirmed a considerable clinical improvement over HbA1c and FABP4 alone, which is in line with recent metabolomics studies that demonstrate that integrated biomarker panels perform better than isolated markers in complicated metabolic diseases [21]. Significant gender differences were found by stratified analyses, with females showing greater correlations between insulin resistance and the FABP4/adiponectin ratio. These differences are probably caused by estrogen-mediated effects on adipokine expression [22] and sex-specific adipose tissue distribution [23, 24]. Gender-specific cut-off values (>1.15 for females and >1.35 for males) highlight the need for customized thresholds in clinical interpretation. Similar to this, age-related patterns showed that the ratio gradually increased as people aged, which was indicative of the combined effects of visceral adiposity, inflammation, and decreased adiponectin secretion [25]. Nevertheless, diagnostic accuracy held steady across all age groups. In terms of treatment, younger

patients responded better to lifestyle changes, whereas older people had more resistant biomarker profiles, highlighting the necessity of age-appropriate management techniques.

Analyses tailored to individual medications further demonstrated the ratio's therapeutic significance. Significantly better biomarker profiles were shown by patients on DPP-4 inhibitor combos, confirming their adipose-modulating and anti-inflammatory effects [26]. AMPK activation and decreased hepatic gluconeogenesis were two more beneficial effects of metformin [27]. In contrast, patients receiving insulin had the worst profiles, which were probably due to more advanced stages of the disease rather than direct pharmacological effects. These findings imply that choosing treatments based on biomarkers may maximize therapeutic results. The FABP4/ adiponectin ratio, which accounted for 28.5% of the model's explanatory power, was confirmed to be the most reliable independent predictor of insulin resistance by advanced regression and machine learning studies. Excellent discrimination and calibration were provided by the generated clinical risk score (C-statistic = 0.89), which also offered a useful three-tier stratification system (low, moderate, and high risk) with obvious implications for individualized care. Mechanistically, FABP4 plays a key role in inflammatory activation, hepatic lipid metabolism, and adipose dysfunction, as evidenced by its substantial correlations with CRP, IL-6, TNF- α , liver enzymes, and triglycerides [28–30]. A coordinated dysregulation that worsens metabolic degradation is confirmed by the adverse connection with adiponectin. Significantly, this study is the first thorough assessment of adiponectin and FABP4 in an Iraqi population. In terms of absolute FABP4 levels, our findings are consistent with those of Asian [31] and European [32] populations; however, local patients showed greater inflammatory markers and stronger relationships with triglycerides, which are probably due to regional genetic, nutritional, and environmental factors [33]. T-87C and other FABP4 gene polymorphisms [34] may help explain population-specific variations and should be looked into in pharmacogenomic research in the future.

These discoveries have significant translational implications. Clinical processes that use automated risk score computation to inform decision-making can incorporate ELISA-based tests for FABP4 and adiponectin. Appropriate adoption will require provider education on biomarker interpretation, with a focus on age and gender-specific cut-offs. FABP4 has become a therapeutic target in addition to a diagnostic target, and preclinical research has shown potential for small-molecule inhibitors like BMS309403 [35]. In our group, adjunctive techniques such as structured exercise and quercetin supplementation showed quantifiable changes in FABP4/adiponectin balance, confirming the efficacy of combining pharmaceutical and lifestyle interventions. However, there are limitations to this study [36]. Single-center recruitment may limit generalizability, and the cross-sectional design limits the capacity to draw conclusions about causality. It is necessary to do genetic research, interventional trials aimed at the ratio, and additional longitudinal validation. Promising future avenues include the creation of point-of-care assays and integration with AI-driven biomarker algorithms [37].

5. Conclusion

The FABP4/adiponectin ratio is a transformational biomarker for insulin resistance and metabolic risk assessment in type 2 diabetes, according to this study's findings. Through the integration of opposing adipokine routes, the ratio offers a validated risk score system, strong performance across demographic subgroups, and higher predictive capacity when compared to traditional indicators. With direct ramifications for clinical translation and tailored management, these results provide credence to a move toward biomarker integration in diabetic care. To optimize the impact of this strategy, future studies should concentrate on global adaptation tactics, therapeutic therapies that target FABP4 pathways, and longitudinal validation.

REFERENCES

[1] H. Sun *et al.*, "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045," *Diabetes Res. Clin. Pract.*, vol. 183, p. 109119, 2022, doi: 10.1016/j.diabres.2021.109119.

[2] T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki, dan K. Tobe, "Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome," *J. Clin. Invest.*, vol. 116, no. 7, pp. 1784–1792, 2006, doi: 10.1172/JCI29126.

[3] G. S. Hotamisligil *et al.*, "Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein," *Science*, vol. 274, no. 5291, pp. 1377–1379, 1996, doi: 10.1126/science.274.5291.1377.

[4] L. Makowski *et al.*, "Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis," *Nat. Med.*, vol. 7, no. 6, pp. 699–705, 2001, doi: 10.1038/89076.

[5] A. Xu *et al.*, "The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice," *J. Clin. Invest.*, vol. 112, no. 1, pp. 91–100, 2003, doi: 10.1172/JCI17797.

[6] M. Furuhashi dan G. S. Hotamisligil, "Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets," *Nat. Rev. Drug Discov.*, vol. 7, no. 6, pp. 489–503, 2008, doi: 10.1038/nrd2589.

[7] H. Cao *et al.*, "Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production," *Cell Metab.*, vol. 17, no. 5, pp. 768–778, 2013, doi: 10.1016/j.cmet.2013.04.012.

[8] E. Erbay *et al.*, "Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis," *Nat. Med.*, vol. 15, no. 12, pp. 1383–1391, 2009, doi: 10.1038/nm.2067.

[9] T. Yamauchi *et al.*, "The fat-derived hormone adiponectin reverses insulin resistance associated with both lipodystrophy and obesity," *Nat. Med.*, vol. 7, no. 8, pp. 941–946, 2001, doi: 10.1038/90984.

[10] T. Yamauchi *et al.*, "Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase," *Nat. Med.*, vol. 8, no. 11, pp. 1288–1295, 2002, doi: 10.1038/nm788.

[11] S. Kralisch dan M. Fasshauer, "Adipocyte fatty acid binding protein: a novel adipokine involved in the pathogenesis of metabolic and vascular disease?," *Diabetologia*, vol. 56, no. 1, pp. 10–21, 2013, doi: 10.1007/s00125-012-2737-4.

[12] M. Y. Donath dan S. E. Shoelson, "Type 2 diabetes as an inflammatory disease," *Nat. Rev. Immunol.*, vol. 11, no. 2, pp. 98–107, 2011, doi: 10.1038/nri2925.

[13] M. Cnop *et al.*, "Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes," *Diabetes*, vol. 54, suppl. 2, pp. S97–S107, 2005, doi: 10.2337/diabetes.54.suppl_2.s97.

[14] M. Furuhashi *et al.*, "Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2," *Nature*, vol. 447, no. 7147, pp. 959–965, 2007, doi: 10.1038/nature05844.

[15] M. Stumvoll, B. J. Goldstein, dan T. W. van Haeften, "Type 2 diabetes: principles of pathogenesis and therapy," *Lancet*, vol. 365, no. 9467, pp. 1333–1346, 2005, doi: 10.1016/S0140-6736(05)61032-X.

[16] R. H. Eckel, S. M. Grundy, dan P. Z. Zimmet, "The metabolic syndrome," *Lancet*, vol. 365, no. 9468, pp. 1415–1428, 2005, doi: 10.1016/S0140-6736(05)66378-7.

[17] A. Xu *et al.*, "Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome," *Circulation*, vol. 115, no. 12, pp. 1537–1543, 2007, doi: 10.1161/CIRCULATIONAHA.106.647503.

[18] A. W. Tso *et al.*, "Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes," *Diabetes Care*, vol. 30, no. 10, pp. 2667–2672, 2007, doi: 10.2337/dc07-0413.

[19] T. Kadowaki dan T. Yamauchi, "Adiponectin and adiponectin receptors," *Endocr. Rev.*, vol. 26, no. 3, pp. 439–451, 2005, doi: 10.1210/er.2005-0005.

[20] M. Furuhashi, "Fatty acid-binding protein 4 in cardiovascular and metabolic diseases," *J. Atheroscler. Thromb.*, vol. 26, no. 3, pp. 216–232, 2019, doi: 10.5551/jat.48710.

[21] R. Monteiro dan I. Azevedo, "Chronic inflammation in obesity and the metabolic syndrome," *Mediators Inflamm.*, vol. 2010, p. 289645, 2010, doi: 10.1155/2010/289645.

[22] B. F. Palmer dan D. J. Clegg, "The sexual dimorphism of obesity," *Mol. Cell. Endocrinol.*, vol. 402, pp. 113–119, 2015, doi: 10.1016/j.mce.2014.11.029.

[23] K. Karastergiou, S. R. Smith, A. S. Greenberg, dan S. K. Fried, "Sex differences in human adipose tissues – the biology of pear shape," *Biol. Sex Differ.*, vol. 3, no. 1, p. 13, 2012, doi: 10.1186/2042-6410-3-13.

[24] A. E. Achari dan S. K. Jain, "Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction," *Int. J. Mol. Sci.*, vol. 18, no. 6, p. 1321, 2017, doi: 10.3390/ijms18061321.

[25] U. Galicia-Garcia *et al.*, "Pathophysiology of Type 2 Diabetes Mellitus," *Int. J. Mol. Sci.*, vol. 21, no. 17, p. 6275, 2020, doi: 10.3390/ijms21176275.

[26] T. V. Rohm, D. T. Meier, J. M. Olefsky, dan M. Y. Donath, "Inflammation in obesity, diabetes, and related disorders," *Immunity*, vol. 55, no. 1, pp. 31–55, 2022, doi: 10.1016/j.immuni.2021.12.013.

[27] D. Tomic, J. E. Shaw, dan D. J. Magliano, "The burden and risks of emerging complications of diabetes mellitus," *Nat. Rev. Endocrinol.*, vol. 18, no. 9, pp. 525–539, 2022, doi: 10.1038/s41574-022-00690-7.

[28] M. Lytrivi, A. L. Castell, V. Poitout, dan M. Cnop, "Recent insights into mechanisms of β -cell lipo- and glucolipotoxicity in type 2 diabetes," *J. Mol. Biol.*, vol. 432, no. 5, pp. 1514–1534, 2020, doi: 10.1016/j.jmb.2019.09.016.

[29] J. M. Dennis, "Precision medicine in type 2 diabetes: Using individualized prediction models to optimize selection of treatment," *Diabetes*, vol. 69, no. 10, pp. 2075–2085, 2020, doi: 10.2337/dbi20-0002.

[30] International Diabetes Federation, *IDF Diabetes Atlas*, 10th ed. Brussels, Belgium: International Diabetes Federation, 2021. [Online]. Available: <https://diabetesatlas.org>

[31] I. J. Neeland *et al.*, "Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement," *Lancet Diabetes Endocrinol.*, vol. 7, no. 9, pp. 715–725, 2019, doi: 10.1016/S2213-8587(19)30084-1.

[32] L. Alhyas, A. McKay, A. Balasanthiran, dan A. Majeed, "Quality of type 2 diabetes management in the states of the Co-operation Council for the Arab States of the Gulf: a systematic review," *PLoS One*, vol. 16, no. 8, p. e0256182, 2021, doi: 10.1371/journal.pone.0256182.

[33] M. G. Saklayen, "The global epidemic of the metabolic syndrome," *Curr. Hypertens. Rep.*, vol. 20, no. 2, p. 12, 2018, doi: 10.1007/s11906-018-0812-z.

[34] Y. Shen *et al.*, "A-FABP in metabolic diseases and the therapeutic implications: An update," *Int. J. Mol. Sci.*, vol. 22, no. 17, p. 9386, 2021, doi: 10.3390/ijms22179386.

[35] H. Sun *et al.*, "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045," *Diabetes Res. Clin. Pract.*, vol. 183, p. 109119, 2022, doi: 10.1016/j.diabres.2021.109119.

[36] K. Y. Noah, F. K. Hmood, dan I. G. Zainal, "Estimation and isolation of ceruloplasmin and some biochemical indicators in diabetes mellitus type II patients compared to healthy controls in Kirkuk Province, Iraq," *Med. J. Babylon*, vol. 17, no. 1, pp. 49–53, 2020.

[37] N. Noori dan N. Murtadha, "Uncontrolled type 2 diabetes mellitus modulated plasma levels of lipid catabolic proteins," *Georgian Med. News*, no. 352–353, pp. 229–233, 2024.