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Abstract: This paper investigates the temperature dependence of the photoluminescence properties
of inorganic perovskite CsPbBrs. Nanoparticles were synthesized by a ligand-assisted method using
CsBr and PbBr; as precursors, dimethyl sulfoxide as a solvent, and oleylamine and oleic acid as
stabilizers. After purification by centrifugation with acetone, the samples were analyzed using a
Shimadzu RF-6000 spectrofluorometer in the temperature range of 45-95 °C. With increasing
temperature, the photoluminescence peak shifts from 448 nm (2.77 eV) at 45 °C to 567 nm (2.19 eV)
at 95 °C. Simultaneously, the spectral line broadens from ~30 to ~40 nm (FWHM), and the emission
intensity decreases by more than half. These changes result from band gap narrowing, enhanced
electron—phonon coupling, and activation of defect states. The activation energy of non-radiative
processes was calculated as Ea=0.374 eV, consistent with literature data. The results clarify the
mechanisms of thermal quenching in CsPbBrs and are relevant for perovskite-based optoelectronic
devices.
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1. Introduction

In recent years, inorganic halide perovskites, especially CsPbBrs;, have attracted
increased attention from researchers due to their unique optical and electrochemical
properties. These materials are characterized by high photoluminescent quantum
efficiency, narrow spectral line width, and the ability to change the bandgap width by
altering the composition or size of nanoparticles [1], [2], [3], [4]. Because of these features,
CsPbBr; is considered a promising material for use in light-emitting diodes, solar cells,
lasers, photodetectors, and sensor devices [5], [6], [7], [8], [9]. However, despite its
impressive characteristics, one of the main problems remains the instability of perovskites
when exposed to external factors such as temperature, moisture, and oxygen. When
heated, a decrease in the intensity of photoluminescence (PL) is observed, a shift of its
maximum emission towards longer wavelengths, and a broadening of spectral lines. These
effects are associated with the activation of non-radiative recombination channels, the
enhancement of electron-phonon interactions, and the involvement of defect states [10],
[11], [12], [13], [14], [15]. It is known that temperature effects in perovskites are effectively
described by the Varshen equation, which relates the band gap width to temperature [16],
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[17], [18], [19], [20]. As the temperature increases, the width of the forbidden zone
decreases, causing a red shift in the photoluminescence maxima. Moreover, the
contribution of phonon processes increases, causing line broadening and enhanced
quenching. To quantitatively estimate thermal quenching, the activation energy (Ea) is
calculated, which reflects the depth of defect levels and thermally activated traps. For
CsPbBrs3, values in the range of 0.2-0.4 eV are given in the literature, which confirms the
model of activation of non-radiative recombination pathways [21], [22], [23], [24].
Determining the activation energy has both fundamental and applied significance. From a
fundamental point of view, it helps to understand the mechanisms of degradation of
perovskite compounds. From a practical point of view, it makes it possible to predict the
stability and efficiency of perovskite light-emitting diodes and other optoelectronic
devices under various operating conditions. Accordingly, the current task is to study the
temperature dependence of CsPbBr; photoluminescence in the range of 45-95 °C and to
determine the activation energy of thermal quenching.

This work is aimed at analyzing PL spectra at three temperature states, identifying
patterns of Amax maximum shift and line broadening, and calculating the activation
energy of non-radiative processes.

2. Materials and Methods

Cesium bromide (CsBr, 99.9%, Sigma-Aldrich), lead bromide (PbBr;, 99.9%, Alfa
Aesar), dimethyl sulfoxide (DMSO, analytical grade), oleylamine (OAm, 70%), oleic acid
(OA, 90%), and acetone (as a precipitant, pure for analysis). All reagents were used without
additional purification. Preparation of the precursor solution. A stoichiometric amount of
CsBr and PbBr; in a molar ratio of 1:1 was dissolved in 10 ml of DMSO at a temperature of
85 °C. To stabilize the colloidal particles, oleylamine and oleic acid were added to the
mixture in equal volumes (0.3 ml each). The mixture was stirred with a magnetic stirrer at
a constant speed until the components were completely dissolved.

To isolate the nanoparticles, acetone was added to the reaction mixture in a volume
exceeding the initial solution by 3—4 times. Precipitation occurred as a result of a decrease
in the solubility of perovskite compounds. The resulting suspension was then centrifuged
at 6000 rpm for 10 minutes. The separated precipitate was redispersed in toluene until a
transparent colloidal solution was obtained. Photoluminescence measurement.
Photoluminescence spectra were recorded on a Shimadzu RF-6000 spectrofluorometer.
The sample temperature was controlled with an accuracy of +0.5 °C. Measurements were
performed at three temperatures: 45, 65, and 95 °C. The spectra were recorded in the range
of 400-800 nm. The maximum emission values (Amax), full width at half maximum
(FWHM), and relative integral intensity were taken for analysis.

To calculate the activation energy of thermal quenching, the following model was
used:
Iy
1+ Aexp(_Ea/kBT)

Where 10 is the limiting intensity at low temperature, A is an empirical constant, kB
is Boltzmann's constant, and Ea is the activation energy. Linearization of the equation
allowed us to plot the dependence of In(I0/I-1) on 1/T and determine the value of the
activation energy from the slope of the line.

I(T) =

3. Results and Discussion

The photoluminescent properties of CsPbBr; were studied in the temperature range
of 45-95 °C. The obtained spectra showed regular changes in the position of the emission
maximum, the width of the spectral lines, and the intensity.
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Figure 1. Photoluminescence spectrum of CsPbBr; at 45 °C.

At 45 °C (Figure 1), the maximum photoluminescence was recorded at 448 nm (2.77
eV). The spectrum was narrow (FWHM = 30 nm) and the intensity was high, indicating
the predominance of radiative recombination.
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Figure 2. Photoluminescence spectrum of CsPbBr; at 65 °C.

At 65 °C (Figure 2), the maximum shifted to the long-wave region (496 nm, 2.50 eV),
and the line width increased to ~35 nm. At the same time, a decrease in intensity of
approximately 30% was observed. These changes indicate the onset of thermal quenching
caused by electron-phonon interaction and activation of trap levels.
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Figure 3. Photoluminescence spectrum of CsPbBr; at 95 °C.

Further heating to 95 °C (Figure 3) resulted in a red shift of the maximum to 567 nm
(2.19 eV). The line width increased to ~40 nm, and the intensity fell by more than half
relative to the initial value. This reflects the increase in the contribution of non-radiative
processes and the high sensitivity of the material to heating.

Table 1. Photoluminescence parameters of CsPbBr; under various temperatures.

Temperature, Amax, Photon FWHM, Relative .
o energy, . . Spectrum characteristics
C nm eV nm intensity
45 448 2.77 ~30 1.00 Narrow peak in the blue
region; high intensity,
minimal extinction
65 496 2.50 ~35 0.70 Red shift into the blue-
green region; onset of
thermal quenching,
increase in  phonon
contribution
95 567 2.19 ~40 0.45 Strong red shift into the
yellow-green region;

pronounced quenching,
activation of defective
states

Comparative data are presented in Table 1. It can be seen that Amax systematically
shifts to the long-wave region, FWHM increases, and intensity decreases. Figure 4 shows
these dependencies in graphical form: as the temperature increases, the radiation
maximum shifts by approximately 120 nm, and the line width increases by ~30%.
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Figure 4. Temperature dependence of the position of the photoluminescence
maximum (Amax) and spectral line width (FWHM) in CsPbBrs.

For quantitative analysis, the activation energy was calculated using the
photoluminescence thermal quenching model. Linearization of the dependence of In(10/1 -
1) on 1/T (Figure 5) allowed us to determine the activation energy Ea=0.374 eV (=374 meV).
This value is consistent with the literature data (0.2-0.4 eV), which confirms the activation
of defect states as the main mechanism for reducing intensity during heating.
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Figure 5. Linearization of CsPbBrs photoluminescence thermal quenching.

Thus, the results obtained show that the key factors in the degradation of
photoluminescence in CsPbBr; are a decrease in the bandgap width, an increase in
electron-phonon interaction, and an increase in the contribution of defect levels with
rising temperature. This limits the effectiveness of the material in light-emitting devices
and highlights the need to develop methods for stabilizing the structure.

4. Conclusion

It has been established that when the temperature rises from 45 to 95 °C, the
photoluminescence of CsPbBrs; shifts from 448 to 567 nm, which corresponds to a decrease
in photon energy from 2.77 to 2.19 eV.
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The temperature increase is accompanied by a broadening of the spectral lines
(FWHM increases from ~30 to ~40 nm) and a significant decrease in radiation intensity.

Based on the results of linearization of thermally quenched photoluminescence, the
activation energy of non-radiative processes was calculated to be ~0.374 eV.

The data obtained confirm that the key reasons for the degradation of
photoluminescence in CsPbBr; are a decrease in the bandgap width, electron-phonon
broadening, and activation of defect levels.
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