

CENTRAL ASIAN JOURNAL OF MEDICAL AND NATURAL SCIENCES

https://cajmns.casjournal.org/index.php/CAJMNS

Volume: 06 Issue: 04 | October 2025 ISSN: 2660-4159

Article

A Study on Microwave Preparation and Stability of Some Organic Reagent Derivatives of 2- (2,3 Dimethyl Phenylamino) Benzoic Acid in Light and Darkness

Maan Ziadan Khalaf

- Salah al-Din Education Directorate, Iraq
- * Correspondence: maanqqqq@gmail.com

Abstract: Microwave-assisted chemistry has attracted much interest as a new tool in green chemistry with regard to its efficiency, energy saving, and environmental friendliness. Separating the present invention is known to increase the speed of organic synthesis, providing tremendous benefits over the old-fashioned techniques. The use of microwave irradiation as an alternative to classical heating methods for the synthesis of organic derivatives has received increasing attention in particular the synthesis of substituted and derivatives of 2-(2,3 dimethyl phenylamino) benzoic acid which are important for their pharmaceutical applications due to a wide range of biological activity. Microwave-assisted synthesis has been demonstrated to be an efficient method for improving the reaction process, however, the stability of these compounds in different conditions, especially under light and dark, have not yet been investigated. Moreover, this gap in knowledge restricts the generalisation of these methods to industrial processes. Abstract: In this study, we derive organic reagents from 2-(2,3 dimethyl phenylamino) benzoic acid under microwave radiation which are both stable in solution and high performing over a range of environmental conditions. The compounds were synthesized from the solvents free, green method, and then characterization was done using UV-Vis, IR, and NMR spectroscopy. Reagent stability was also evaluated, demonstrating a high stability of reagents in the light and dark with some compounds exhibiting increased stability from the effect of a blocking group. It fills important informational gaps in the literature and provides new details on the stability and environmental behavior of organic reagents that are synthesized by microwave. The results highlight microwave-assisted methods as effective, scalable synthetic techniques for generating organic compounds that are thermally stable and produced in high yields, with important implications for sustainable chemical processes in research and industry.

Citation: Khalaf, M. Z. A Study on Microwave Preparation and Stability of Some Organic Reagent Derivatives of 2- (2,3 Dimethyl Phenylamino) Benzoic Acid in Light and Darkness. Central Asian Journal of Medical and Natural Science 2025, 6(4), 2242-2259

Received: 08th Jun 2025 Revised: 15th Jul 2025 Accepted: 24th Aug 2025 Published: 18th Sep 2025

Copyright: © 2025 by the authors.
Submitted for open access
publication under the terms and
conditions of the Creative
Commons Attribution (CC BY)
license

(https://creativecommons.org/lice nses/by/4.0/)

Keywords: Green reaction, Microwave, Stability, Triazole, Thiazolidinone

1. Introduction

Microwave-assisted chemistry has become increasingly important in the last few years as a clean, rapid, and inexpensive alternative methodology in organic synthesis. Using this method, the preparation of organic reagents has become completely different and this approach has shown remarkable superiority over conventional heating process [1]. Microwave radiation can be employed in organic synthesis, as it selectively excites polar bonds, allowing for faster, cleaner and more efficient processes and thus reducing the consumption of energy. This includes a novel rational application of microwave irradiation for the preparation of organic derivatives from 2-(2,3 dimethyl phenylamino) benzoic acid. A key aspect that has not yet been explored in the literature on microwave-

assisted organic synthesis is the efficiency and stability of these compounds over a range of conditions and this study addresses this fundamental issue [2].

Microwaves are known for accelerating reactions and improving yields and have previously, effectively applied to preparation of functional organic compounds like triazoles and thiazolidinones. We have been proven that microwave increase reaction rates and also decrease reaction times. To the best of our knowledge, the studies by Polshettiwar and Ali have shown that microwave-assisted synthesis is an efficient method for the preparation of high-quality organic compounds with better yields and purity [3]. Despite the extensive investigation of microwave-assisted preparation of diverse organic reagents, their stability and behavior in environmental conditions are still poorly understood. This lack of existing knowledge encourages the analysing of microwave-synthesised reagents in terms of their stability both in light and dark and also the applications in which they could potentially be entered into many industries.

We are specifically interested in the stability of the organic reagents imprinted from 2-(2,3 dimethyl phenylamino) benzoic acid, and their performance under light and dark conditions. Microwave-synthesized compounds were applied for stability testing through time-related analysis of absorption properties. Method – The method uses greener, solvent free synthesis of different derivatives, further the fully characterized derivative by UV-Visible, IR and NMR. This method helps to understand the efficiency of microwave-assisted synthesis while being in the situation of the potential environment benefits for employing such methods during organic synthesis [4].

This study is expected to produce stable organic reagents with excellent yields and strong stability under different environmental conditions. The results are intended to illustrate the benefits of microwave-assisted organic synthesis over larger feedstock quantities. This work must additionally gain valuable information regarding the structural features in the reagents that can permit the construction of greater sustainable and environmentally friendly chemical methodologies [5].

This paper fills some obvious gaps in the literature by thoroughly investigating microwave-assisted preparation, stability and characterization of few organic reagents based on 2-(2,3 dimethyl phenylamino) benzoic acid. Our study would explore this actual potential from the angle of the microwave-assisted organic syntheses, and not only contribute to more practical microwave-assisted organic syntheses, but also providing implications on the sustainable chemical processes and perspectives toward the green chemistry [6].

2. Materials and Methods

Materials and Methods

Electro Thermal 9300 was used to measure the melting point, which did not achieve corrected values. The absorption values (λmax) were recorded from the Jascow32 (UV-Visible) Spectrophotometer V-500, Scale (200-800) nm. While IR spectroscopy was recorded with FTIR spectrophotometer 8400 S, Shimadzu Corporation, with KBr disks with a scope of (4000-400) cm-1, NMR spectra of 1H-NMR, and 13C-NMR measurements, which were performed using 1H-NMR Ultra shield recorded on 500 MHz Bruker, using DMSO with TMS as an internal reference. The Micro-radiation ranged between 400-480 w, which was gained from microwave oven. Thin film photocopy TLC silicagel, fluorocent (1.2) mm and iodization were materials used directly without re-crystallization, equipped by companies of Merck, Fluka, Aldrich and BDH [7][8].

Preparation of Derived Amino of 1,2,4 -Triazole with Microwave Radiation [I] (10)

Radiation was performed on a mixture of 1,3 Diamino-2-thiourea and 2- (2,3-Dichathyl Phenylamino) by mixing (1:1) moles in microwave oven at 400 watts and at melting point for (10-15) minutes with pause for (1) min per (5) minutes. The output was obtained and then was left to cool at room temperature. After that, it was mixed with aqueous solution of crystallization with 10% of sodium bicarbonate. Then, the crystallized precipitate was collected and washed with distilled water; and its crystallization of

absolute ethanol was reconstituted according to the following equation:

Preparation of Amino-Arylidines of 1,2,4-Triazole with Microwave Radiation [II1-10] (11)

About (0.02 g, 0.002 m) of compound [I] was mixed with 0.002 mol of benzaldehyde derivatives with a drop of glacial acetic acid in a heat-resistant glass vial with stirring until homogenization. Then, it was mixed in microwave oven and irradiated for (10-12) minutes at 400 watts [9]. Next, the output was obtained and left to cool at room temperature. The product was collected and recrystallized from ethanol, see Table 1.

$$H_3C$$
 $N-H$
 $N-N$
 $MW / Ar-CHO$
 $MW / Ar-CHO$
 $N-N$
 $N-N$

Table 1. Some physical properties of prepared arylidinamino 1,2,4-triazoles [II1-10]

Table 1. Some physical properties of prepared arynumanino 1,2,4-mazores [111-10]								
Comp.	SubstituteA	Molecular Formula	M.P ºC	Color	Yield	Cryst.		
No.	r2	Molecular Weight	171.1	Color	(%)	Sol.		
I_1	Н	C23H21N5S	144 -146	Dark Brown	78	MeOH		
11	11	399.35	144-140	Dark brown	70	WICOIT		
I_2	4-OH	C23H21N5SO	166 – 168	Poor White	90	MeOH		
12	4-011	415.35	100 – 100	1 001 vviite	90	MeOII		
I_3	2,4,di OH	C23H21N5SO2	93-95	Green	93	EtOH		
13	2,4,01 O11	431.35	93-93	yellow	93	ЕЮП		
I_4	2-OH 5-Cl	C23H20N5SOCl	122 - 124	Orange	83	MeOH		
14	2-011 J-C1	449.45	122 - 124	Orange	0.5	1010011		
I_5	4- Cl	C23H20N5SCl	171 - 173	Red	85	EtOH		
15		433.45	171 - 173	Red	0.5	EtOIT		
I_6	4-Br	C23H20N5SBr	180 - 182	Dark Brown	90	MeOH		
16	4-D1	477.90	100 - 102	Dark brown	90	MeOII		
I_7	4-N(CH ₃) ₂	C25H20N6S	195 - 197	Brown	75	MeOH		
17	4-1N(CH3)2	422.38	193 - 197	brown	73	меон		
Is	4-NH2	C23H22N6S	188- 190	Red	88	МеОН		
18	4-1N1 1 2	414.36	100- 190	Red	00	MeOII		
I ₉	2-NO ₂	C23H20N6SO2	174-176	Brown	92	МеОН		
19	Z-1NO2	444.36	1/4-1/0	DIOWII	92	MeOn		
т	4 NO-	C23H20N6SO2	174 176	Dwarin	02	МеОН		
I_{10}	4-NO ₂	444.36	174-176	Brown	93	MeOH		

Preparation of Thiazolidinones in the Microwave [III 1-10] (12)

About (0.002 ml, 0.7 ml) of 2-mercapto acetic acid was mixed with (0.002 mol) of compounds [II1-11] with drops of dry dioxan until formed as a soft paste. Then, (0.002g) of anhydrous zinc chloride was added with stirring [10][11]. After that, micro-radiation was performed on the mixture for (10-12) minutes at 400 watts. Then, the mixture was left to cool, and then washed with a cold solution of bicarbonate. The precipitate was filtered

and recrystallized with an appropriate solvent. Table 2 shows some physical properties of the prepared compounds.

$$Ar_{1} = \begin{cases} N & N \\ N & SH \\$$

Table 2. Some physical properties of prepared thiazolidinones[III1-10]

Comp.		Molecular Molecular	1		Yield(Cryst.
No.	Substitute A	Formula	M.P ºC	Color	%)	Sol.
III_1	Н	C25H23N5OS	179 - 181	Brown	66	EtOH
III_2	4-OH	C25H23N5SO2	166- 168	red	73	EtOH
III ₃	2,4,di OH	C25H23N5SO3	193- 195	Yellow	63	MeOH
III_4	2-OH, 5-Cl	$C_{25}H_{22}N_5OS_2Cl \\$	182- 184	Yellow	56	EtOH
III_5	4- Cl	C25H22N5OS2Cl	149- 151	Brown	81	MeOH
III_6	4-Br	$C_{25}H_{22}N_5OS_2Br$	172- 174	Purple	68	MeOH
III_7	4-N(CH ₃) ₂	$C_{27}H_{28}N_6OS_2$	198 - 200	Yellow	55	EtOH
IIIs	4-NH2	C25H24N6OS2	159-161	Light Red	74	EtOH
III9	2-NO ₂	$C_{25}H_{22}N_6O_3S_2$	194- 196	red	89	EtOH
III_{10}	4-NO ₂	$C_{25}H_{22}N_6O_3S_2$	190- 192	red	78	EtOH

Preparation of Solutions

Solution of Organic Prepared Reagents [II1-10] (13)

The reagent solution was prepared at a concentration of 3-10 molar by dissolving the appropriate amount (as illustrated in table 3) in 100 ml of aqueous solution of sodium hydroxide 0.1 N; and then the volume was completed using distilled water in a 500 ml volumetric flask [12]. The pH of the reagent solution measurement is shown in table 3.

Table 3. Weights and Acidity of Solutions 3-10 molar for Prepared Reagents (II1-10)

Comp. No.	рН	Used weights		
II ₁	11.50	0.199		
II_2	9.78	0.207		
II ₃	9.82	0.215		
II4	9.90	0.224		
II ₅	10.53	0.216		
Π_6	11.20	0.238		
II ₇	11.06	0.221		
II8	11.01	0.207		
II9	10.30	0.222		
II10	10.19	0.222		

Sodium Hydroxide Solution

Sodium hydroxide solution was prepared with an approximate concentration of 0.1 N. This was done by dissolving 2 g of NaOH in the boiled and cooled distilled water (to expel CO2) in a 500 ml flask to the marked limit [13].

Determination of the λmax Value of Reagents

The wavelength was adopted at the maximum absorption value in the UV-Vis area at a concentration of 5-10×8 molar.

The Stability of Reagents

The stability of reagents was examined by taking 2 ml of the solution of each reagent [II1-10] at a concentration of 10-3 molar. Then, they were diluted with distilled water in a 25 ml volume vial till the mark to give the final concentration. The measurement of absorption was performed at different times (5, 10, 15, 20, 25, 30 minutes and 24 hours) in light and dark. The Blanc solution is made by taking 2 ml of solvent (0.1 N, NaOH). After that, it was diluted with distilled water in a 25 ml volume bottle till the mark [14].

3. Results and Discussion

IR spectra of compound [I]

It showed the main stretching peaks for C=C, C=N, S-H, C-H, ArC-H, NH2, NH, which were (1566, 1496) 1651, 2637, (2853, 2918) 3071, 3344, 3371, 3478 cm 1-. In addition, the C-N stretch was at 1239 cm 1-. This result was identical to the study [15], see figure 1.

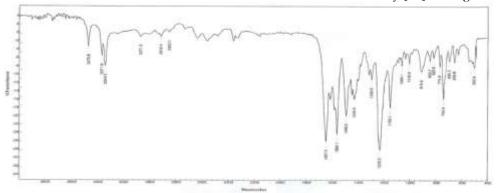


Figure 1. IR spectra of compound [I]

1H-NMR spectrum of compound [I]

It showed signals at locations 2.08(s) 2.28(s), 3.34(s), 5.34(s), 7.88-6.68(m), 9.42(s) ppm, to protons diCH3, S-H, NH2, ArC-H, NH, respectively. This result was consistent with the study [16], see figure 2.

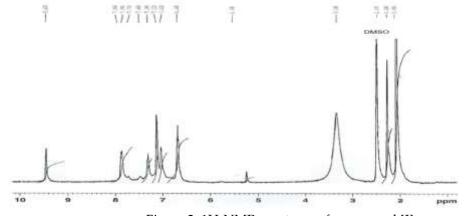


Figure 2. 1H-NMR spectrum of compound [I]

13C-NMR spectrum of compound [I]

It showed two signals at 20.71, 14.14 ppm attributed to carbon of diCH3 groups; (40.57-39.47) ppm attributed to the solvent DMSO- d6; (111.79-147.29) ppm attributed to the aromatic carbons at 151.69 ppm related to the carbonate (CN) and a signal at 167.14 ppm attributed to the C-S, see Figure 3 [17].

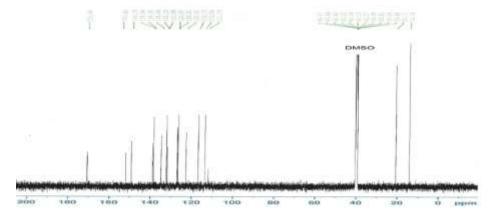


Figure 3. 13C- NMR spectrum of the compound [I]

Preparation of prepared arylidines of amino 1,2,4 - triazole [II1-10]

The imines [II1-10] from the reaction of amino 1,2,4-triazole [I] with the appropriate aldehydes in the micro-smelting method are presented without solvent according to the following general method [18]:

Ar1 = Ar2
$$\stackrel{\circ}{\longrightarrow}$$
 Ar1 $\stackrel{\circ}{\longrightarrow}$ Ar2 $\stackrel{\circ}{\longrightarrow}$ Ar1 $\stackrel{\circ}{\longrightarrow}$ Ar2 $\stackrel{\circ}{\longrightarrow}$ Ar2 $\stackrel{\circ}{\longrightarrow}$ Ar2 $\stackrel{\circ}{\longrightarrow}$ Ar3 $\stackrel{\circ}{\longrightarrow}$ Ar2 $\stackrel{\circ}{\longrightarrow}$ Ar3 $\stackrel{\circ}{\longrightarrow}$ Ar4 $\stackrel{\circ}{\longrightarrow}$ Ar5 $\stackrel{\circ}{\longrightarrow}$ Ar4 $\stackrel{\circ}{\longrightarrow}$ Ar5 $\stackrel{\circ}{\longrightarrow}$ Ar6 $\stackrel{\circ}{\longrightarrow}$ Ar7 $\stackrel{\circ}{\longrightarrow}$ Ar7 $\stackrel{\circ}{\longrightarrow}$ Ar8 $\stackrel{\circ}{\longrightarrow}$ Ar9 $\stackrel{\circ}$

Table 4. Infrared data for compounds [II1-10]

Comp	IR ν (cm ⁻¹)									
No.	ОН	N-H	Ar –H	С-Н	S-H	C=N	C=C			
II_1		3308 m))	3071 w))	2921 2728(m)	2641 (m)	1647 (s)	1573 (s)			
II2	3550	3344	3049	2961(w)	2644	1649	1575			
	br))	(m)	(w)	2791	(w)	(s)	(s)			
II3	3476	3443	3018	2984(m)	2638	1646	1593			
	(br)	(m)	(w)	2887	(m)	(s)	(s)			
II4	3561	3440	3001	2934(m)	2632	1644	1584			
	(br)	(m)	(w)	2876	(m)	(s)	(s)			

II5	3443	3050	2918(w)	2637	1649	1566
115	 (m)	(w)	2856	(w)	(s)	(s)
II_6	 3344	3005	2867	2638	1650	1567
116	(m)	(w)	(m)	(m)	(s)	(s)
II_7	3307	3010	2858(m)	2640	1645	1573
117	 (m)	(w)	2788	(w)	(s)	(s)
TT	3441	3045	2993(w)	2642	1649	1573
II_8	 (m)	(m)	2891	(m)	(s)	(s)
II9	 3446	3004	2931(m)	2636	1650	1589
119	(m)	(w)	2869	(w)	(s)	(s)
II ₁₀	 3444 (m)	3051 (w)	2978(m) 2876	2639 (m)	1656 (s)	1581 (m)

Infrared spectra of compounds [II1-10]

Infrared spectra of the imines were shown in the bands C = C, C = N, SH, CH, ArC-H, NH, OH which appeared within ranges (1566-1593, 1644-1656, 2632-2644, 2728-2993, 3001-3071, 3307-3446, 3476-3561) cm-1, respectively. This result was identical to the work, see Table 4 and Figures 4-6.

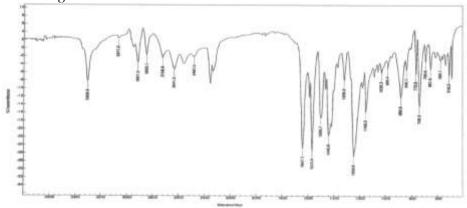


Figure 4. IR spectrum of compound [II1]

Figure 5. IR spectrum of compound [II2]

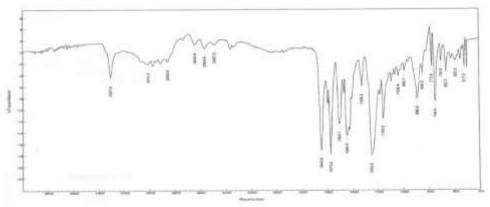


Figure 6. IR spectrum of compound [II7]

1H-NMR spectra of compounds [II1,2,8]

1H-NMR spectra of the recorded imines [II1,2,8] were observed and a reference of the solvent DMSO- d6 was shown at (2.50-2.51) ppm with compatible signals and beams Infrared spectra of prepared compounds as shown below:

Compound [II1]

It showed two signals at 2.25 (s) and 2.10 (s) ppm parts per million attributed to protons of the two groups of methyl (diCH3); a signal at 3.34 (s) 6.67 (m) ppm attributed to aromatic rings protons; and a single indication at 8.62 (s) ppm attributed to the proton of the imine group (N=CH). In addition to a single signal at 9.46 (s) ppm to the proton group (NH), see Figure 7.

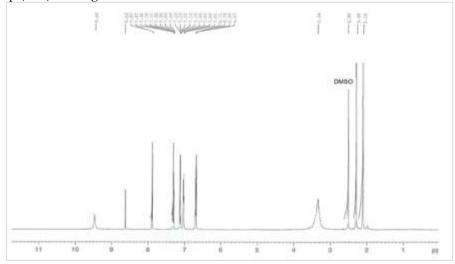


Figure 7. IR spectrum of compound [II1]

Compound [II2]

It showed two single signals at 2.28 (s) ppm, 2.09 (s) ppm attributed to protons of the (diCH3) groups; a single signal at 3.36 (s) ppm for proton group (SH); a multi-signal at range of 7.88-6.23 (m) for aromatic rings proton and a single signal at 8.99 (s) ppm for (N=CH). In addition to the appearance of a single signal at 10.23 (s) ppm of the OH group and at 10.97 (s) ppm attributed to (NH), see Figure 8.

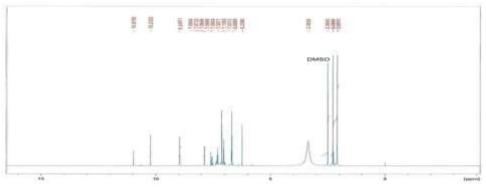


Figure 8. IR spectrum of compound [II2]

Compound

It showed two single signals at 2.29 (s) ppm, 2.10 (s) ppm attributed to protons of the two groups of methyl (diCH3). It also showed a single signal at 3.46 ppm (s) to (SH) and a single signal at 5.74(s) ppm for (NH2). In addition to a multi-signal at range (6.68-7.89) ppm (m) for aromatic rings proton, and the mono signal at 8.74(s) ppm for (N = CH). The signal at 9.48(s) ppm was attributed to proton group amine (NH), see Figure 9.

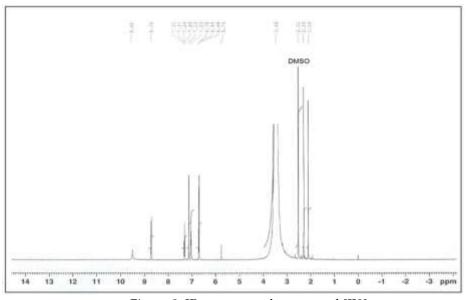


Figure 9. IR spectrum of compound [II8]

13C-NMR Compound [II3]

It showed two signals at (20.72, 14.15) ppm attributed to (diCH3) and others at (40.58-39.49) ppm, DMSO-d6 and multiple signals at range (111.68-149.23) ppm carbon represented the aromatic rings. Also, the appearance of a reference at the site 149.23 ppm was attributed to the C-N site. A sign at site 154.12 ppm carbon was attributed to the carbon group (N=C); as well as two signals at 169.11 and 165.61 ppm for C-O band, and the signal at 172.92 ppm, representing the Carbon of (C-S), see Figure 10.

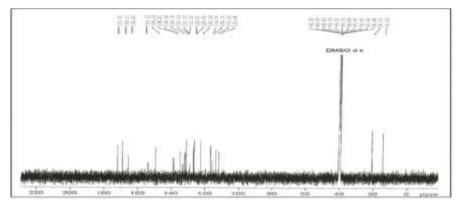


Figure 10. IR spectrum of compound [II3]

Preparation of Thiazolidinones from Corresponding Arylidines of 1,2,4-Triazole [III1-10]

The five-member thiazolidinone derivatives were prepared using microwave radiofusion of the imines [II1-10] with 2-mercapto acetic acid compounds with dioxan as a solvent, as follows:

Ar1 =
$$Ar2$$
 $Ar2$ $Ar2$ $Ar2$ $Ar3$ $Ar2$ $Ar4$ $Ar4$ $Ar5$ $Ar5$ $Ar5$ $Ar5$ $Ar1$ $Ar2$ $Ar1$ $Ar2$ $Ar2$ $Ar3$ $Ar3$ $Ar4$ $Ar5$ $Ar5$

Infrared Spectra of compounds [III1-10]

The main stretching band showed C = C, C = O, S-H, C-H, ArC-H, NH, OH, which were within the ranges (1618-1566, 1730-1704, 2643-2618, 2983-2730, 3166-3004, 3444-3343, 3666-3551) cm-1, respectively. The peaks were identical to the work, see Table 5 and Figures 11 -13 [19].

Table 5. Infrared data for compounds [III1-10]

Comp NO	IR ν (cm ⁻¹)								
NO	ОН	NH	Ar-H	С-Н	S-H	C=O	C=C		
III_1		3444	3090	2966(m)	2640	1716	1587		
1111		(m)	(w)	2869	(w)	(m)	(s)		
III_2	3441	3348	3004	2928	2638	1709	1594		
1112	(br)	(m)	(m)	(w)	(w)	(w)	(s)		
III ₃	3420	3275	3166	2972(s)	2641	1721	1618		
1113	(br)	(br)	(w)2844	2844	(w)	(s)	(s)		
III.	3465	3386	3092	2983(w)	2643	1726	1589		
III_4	(br)	(m)	(m)	2851	(m)	(w)	(s)		
III ₅		3343	3006	2915	2636	1722	1566		
1115		(s)	(m)	(m)2851	(m)	(s)	(s)		

III6	 3344	3071	2954	2639	1730	1567
1116	(m)	(m)	(w)	(w)	(m)	(s)
III_7	 3384	3000	2972	2618	1721	1618
1117	(br)	(w)	(m)2827	(m)	(w)	(s)
111	 3344	3052	2963	2640	1704	1593
IIIs	(m)	(m)	(w)	(w)	(m)	(s)
III9	 3346	3013	2967	2634	1719	1573
	(m)	(w)	(w)	(m)	(m)	(s)
111	 3344	3071	2954	2639	1648	1567
III ₁₀	(s)	(m)	(m)2849	(m)	(w)	(s)

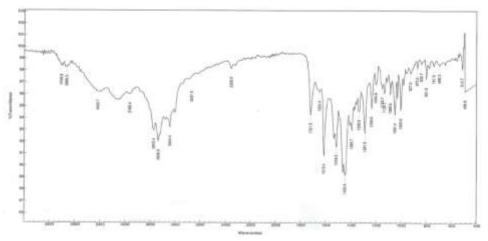


Figure 11. Infrared Spectrum of Compound [III3]

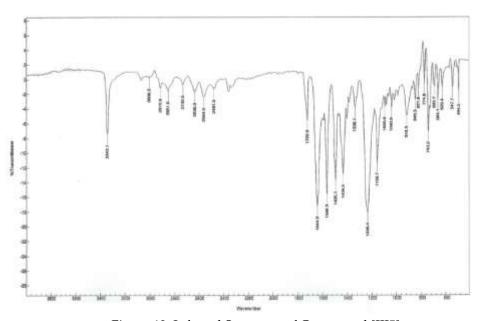


Figure 12. Infrared Spectrum of Compound [III5]

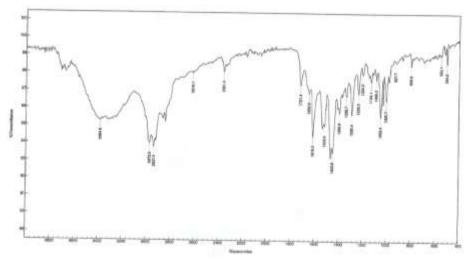


Figure 13. Infrared Spectrum of Compound [III7]

Nuclear Magnetic Resonance Spectrometry 1HNMR and 13CNMR for Compounds [III2,8]

13CNMR spectra of compound

It showed two signals at 20.70, 14.14 ppm of (diCH3) and 59.91 ppm (C-S) for thiazolidinone ring; a signal at 68.56 ppm carbon (N-C-S) and a multiple signal within the range 149.23-111.69 ppm attributed to the aromatic proton and signals of 149.69 m in the (C-N) group and 166.44 ppm attributed to the C-O group [20]. The location sign was 167.32 ppm (C-S) and a signal at 170.69 ppm (C=O) (20), see Figure 14.

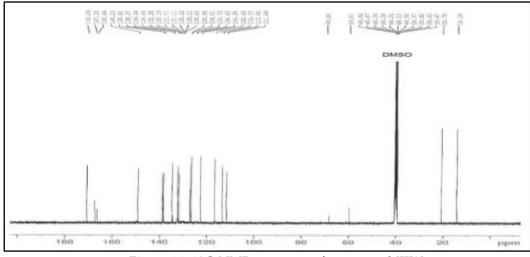


Figure 14. 13C-NMR spectrum of compound [III2]

1HNMR Spectra of Compound [III8]

It showed two single signals at 2.29 (s), 2.10 (s) parts per million attributed to protons of the two groups of methylation (diCH3) with a single signal of 3.48 (s) ppm attributed to the group (SH). In addition to the appearance of a single signal 3.78 (s), a fraction of a million attributed to protons, (CH2) in the thiazolidinone ring; a single signal of 5.10 (s) of the (NH2) group; a single signal of 6.36 (s) ppm, (NCH); a multiple signal within the range (6.39-7.89) (m) fraction ppm attributed to the aromatic proton (ArC-H) and a single 9.93-ppm related to group (NH) (21), see Figure 15.

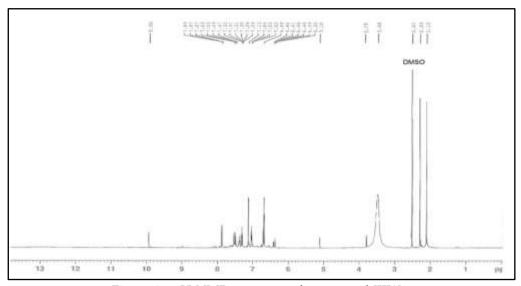


Figure 15. 1H-NMR spectrum of compound [III8]

Stability of prepared reagents [II1-10]

Table (6) shows the absorption values of the prepared reagents at a final concentration of $8\times10-5$ molar at different times and the values of the pH confirmed in it. It is noteworthy that the λ max values with time were constant, but the absorption values for [II1] were stable only in darkness. On the other hand, were stable in light and dark [21]. This stability may be due to their composition which contains activity inhibitory groups in the aromatic rings, the nitro and halogen groups. This indicates the stability of the compounds as an organic reagent, see Figures 16-26.

Table 6. Effect of time factor on stability of prepared reagents [II1-10]

I	Reagent II1, pH	H=11.50, λι	max= 296	Reagent II2, pH=9.78, λmax=288			
]	Light Dark		I	ight	Dark		
Time	Absorptio	Time	Absorption	Time	Absorption	Time	Absorption
(min)	n	(min)	Absorption	(min)	710501ption	(min)	Absorption
5	3.351	5	3.385	5	1.576	5	1.577
10	3.318	10	3.383	10	1.578	10	1.574
15	3.215	15	3.382	15	1.577	15	1.569
20	3.186	20	3.380	20	1.577	20	1.566
25	3.154	25	3.379	25	1.576	25	1.562
30	3.148	30	3.376	30	1.576	30	1.558
24 hrs.	3.060	24 hrs.	3.372	24 hrs.	1.568	24 hrs.	1.421
	Reagent II ₃ , pH=9.82, λmax=303			Reagent II ₄ , pH=9.90 , λmax=313.5			
]	Light Dark		I	Light		Dark	
Time	Absorptio	Time	Abcorption	Time	Absorption	Time	Absorption
(min)	n	(min)	Absorption	(min)	Absorption	(min)	Absorption
5	2.241	5	2.250	5	2.117	5	2.130
10	2.230	10	2.246	10	2.102	10	2.122
15	2.217	15	2.241	15	2.090	15	2.119
20	2.201	20	2.237	20	2.077	20	2.115
25	2.190	25	2.232	25	2.067	25	2.111
30	2.186	30	2.230	30	2.057	30	2.105
24 hrs.	2.142	24 hrs.	2.221	24 hrs.	1.995	24 hrs.	2.088
]	Reagent II₅, pl	H=10.53, $λ$ 1	max=302		Reagent II6, pH	=11.20, λm	ax=
]	Light		Dark	I	ight		Dark
Time (min)	Absorptio n	Time (min)	Absorption	Time (min)	Absorption	Time (min)	Absorption

5	2.123	5	2.124	5	1.908	5	1.908	
10	2.123	10	2.124	10	1.907	10	1.908	
15	2.121	15	2.123	15	1.907	15	1.908	
20	2.121	20	2.122	20	1.906	20	1.908	
25	2.120	25	2.122	25	1.905	25	1.908	
30	2.118	30	2.120	30	1.905	30	1.907	
24 hrs.	2.116	24 hrs.	2.117	24 hrs.	1.903	24 hrs.	1.905	
]	Reagent II7, pl	$H=11.06$, λ 1	max=287	Re	eagent IIs, pH=1	1.01, λmax	c= 307	
]	Light		Dark	I	ight		Dark	
Time (min)	Absorptio n	Time (min)	Absorption	Time (min)	Absorption	Time (min)	Absorption	
5	2.848	5	2.848	5	0.584	5	0.592	
10	2.842	10	2.839	10	0.579	10	0.591	
15	2.751	15	2.825	15	0.578	15	0.590	
20	2.740	20	2.819	20	0.565	20	0.589	
25	2.717	25	2.805	25	0.564	25	0.586	
30	2.704	30	2.791	30	0.552	30	0.587	
24 hrs.	2.682	24 hrs.	2.786	24 hrs.	0.546	24 hrs.	0.584	
I	Reagent II9, pl	$H=10.30, \lambda$	max=304	Reagent II10, pH=10.19, λmax=				
]	Light		Dark	Light			Dark	
Time (min)	Absorptio n	Time (min)	Absorption	Time (min)	Absorption	Time (min)	Absorption	
5	2.275	5	2.279	5	2.626	5	2.626	
10	2.275	10	2.275	10	2.624	10	2.626	
15	2.274	15	2.274	15	2.622	15	2.625	
20	2.273	20	2.274	20	2.620	20	2.624	
25	2.272	25	2.274	25	2.619	25	2.623	
30	2.271	30	2.273	30	2.618	30	2.622	
24 hrs.	2.271	24 hrs.	2.272	24 hrs.	2.613	24 hrs.	2.622	

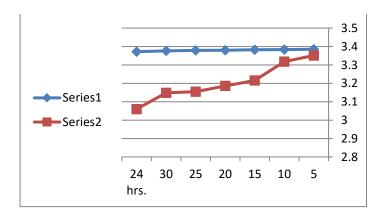


Figure 16. Change the Absorption Values over Time of Compound II1

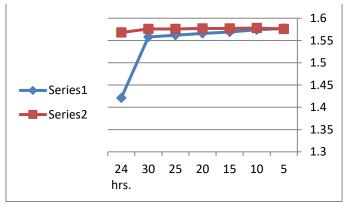


Figure 17. Change the Absorption Values over Time of Compound II2

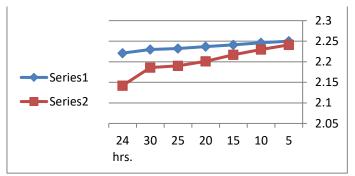


Figure 18.: Change the Absorption Values over Time of Compound II3

Figure 19. Change the Absorption Values over Time of Compound II4

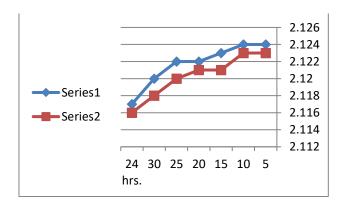


Figure 20. Change the Absorption Values over Time of Compound II5

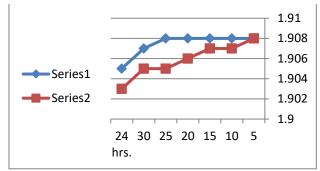


Figure 21. Change the Absorption Values over Time of Compound II6

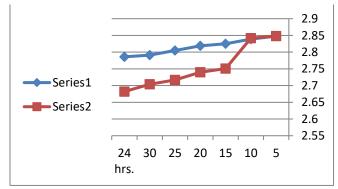


Figure 22. Change the Absorption Values over Time of Compound II7

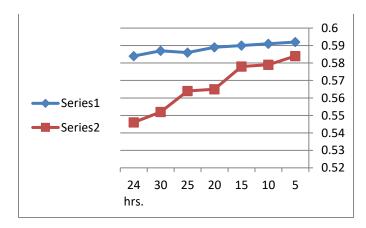


Figure 23. Change the Absorption Values over Time of Compound II8

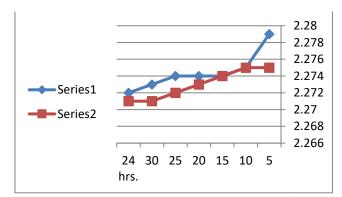


Figure 24. Change the Absorption Values over Time of Compound II9

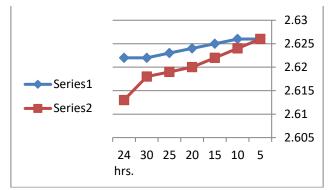


Figure 25. Change the Absorption Values over Time of Compound II10

After observing the stability of the four reagents compounds (II5,6,9,10), it was compared with strength of C=N by the infrared spectrum with the arylidinic groups change as the only structural variable. The results indicated that the strength bond is increasing with the presence of inhibitory groups of aromatic rings, see Figure 26.

Figure 26. Comparison of the absorption values of the C = N group with the change of substituted groups (II1-10)

4. Conclusion

This paper demonstrates this method of microwave-assisted preparation of organic reagents starting from the base compound, 2-(2,3 dimethyl phenylamino) benzoic acid. Microwave radiation was employed to improve the efficiency of the reactions giving a wide range of derivatives in good yields. Under light and dark conditions, the stability of the preparative reagents was assessed, yielding excellent robustness even in the presence of disruptive groups such as nitro and halogen. The compounds were well characterized by UV, IR and NMR spectroscopy to confirm their structures. These results exemplify use of microwave-assisted strategies in green chemistry towards efficient synthesis of stable and high-yield organic species. Further work is needed to see if this method can be extended to other classes of chemicals, and to explore the environmental footprint of these types of reactions, as compared to conventional synthetic methodology. Put together, additional studies will be essential for this long-term stability of said compounds as well as their industrial applicability to be fully understood.

REFERENCES

1] V. Polshettiwar, Aqueous Microwave Assisted Chemistry: Synthesis and Catalysis, Royal Society of Chemistry, Cambridge, UK, 2010. ISBN 978-1-84973-038-9.

- [2] P. Ali, P. Ramakanth, and J. S. Meshram, "J. Coord. Chem.", vol. 63, no. 2, pp. 323-329, 2010.
- [3] B. L. Hayes, "Recent Advances in Microwave-Assisted Synthesis," Aldrich Chimica Acta, vol. 37, no. 2, pp. 66-76, 2004.
- [4] N. E. Leadbeater, Microwave Heating as a Tool for Sustainable Chemistry, CRC Press, Boca Raton, USA, 2010. ISBN 978-1-4398-1270-9.
- [5] B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light, CEM, USA, 2002. ISBN 0-9722229-0-1.
- [6] R. Pagadala, P. Ali, and J. S. Meshram, "J. Coord. Chem.", vol. 62, no. 24, pp. 4009-4017, 2009.
- [7] V. K. Yadav, N. Kumari, and L. Mishra, "Indian J. Chem.", vol. 50A, no. 8, pp. 1035-1042, 2011.
- [8] D. Adam, "Out of the kitchen," Nature, vol. 421, p. 571, 2003.
- [9] R. G. Griffin, "Ind. J. Pharm. Sci.", vol. 12, p. 567, 2003.
- [10] P. Kamaria, N. Kawathekar, and P. Chaturvedi, "E-Journal of Chemistry," vol. 8, no. 1, pp. 305-311, 2011; M. Kadawia, J. Sinha, and K. Verma, "Pharm. Inno. J.", vol. 7, no. 1, pp. 41-47, 2018.
- A. M. Hasan and I. T. Nihad, "Inter. J. Org. Chem.", vol. 7, pp. 412-419, 2017; J. Kumar, A. Rai, and V. Raj, "Organic & Medicinal Chem.", IJ, vol. 1, no. 3, pp. 1-15, 2017.
- [11] S. J. Wadher, N. A. Karande, S. D. Sonawane, and P. G. Yeole, "International Journal of Chem. Tech. Research", vol. 1, no. 4, pp. 1303-1307, 2009.
- [12] Z. Marezenko, Spectrophotometric Determination of Elements, John Wiley and Sons Inc., New York, 1976; D. A. Skoog, J. Holler, and S. R. Crouch, Principles of Instrumental Analysis, 6th ed., Holf Rinehard & Winston, 2007.
- [13] J. W. Dhore, G. B. Pethe, S. P. Waghl, and G. D. Thorat, "Archives of Applied Science Research", vol. 3, no. 1, pp. 407-414, 2011.
- A. Kulshrestha and S. Baluja, "Arch. Appl. Sci. Res.", vol. 2, no. 3, pp. 221-224, 2010.
- [14] Ann and S. Karakash, "Indian J. of Org. Chem.", vol. 6, no. 10, 2008.
- [15] R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed., John Wiley and Sons, Inc., New York, 1981.
- [16] R. R. Kamble, B. S. Sudha, and D. G. Bhadregowda, "J. Serb. Chem. Soc.", vol. 73, no. 2, pp. 131-138, 2008.
- A. A. Hamed, M. Sc. Thesis, University of Tikrit, Tikrit, Iraq, 2003.
- [17] H. Zhou, S. Wu, S. Zhai, A. Liu, Y. Sun, R. Li, Y. Zhang, S. Ekins, O. Peter, W. Swaan, B. Fang, B. Zhang, and B. Yan, "J. Med. Chem.", vol. 51, pp. 1242–1251, 2008.
- [18] M. Rashid and A. Rau, "Pharm. Inno. J.", vol. 7, no. 1, pp. 41-47, 2018.