

Volume: 05 Issue: 01 | Jan-Feb 2024 ISSN: 2660-4159

http://cajmns.centralasianstudies.org

STUDY SOME VIRULENCE FACTORS AND ANTIBIOTIC SUSCEPTIBILITY OF SOME CANDIDA SPP. ISOLATED FROM DIFFERENT CLINICAL SITES

- 1. Ayad M. Mustafa
- 2. Sanaa H. Mohammed

Received 20th Nov 2023, Accepted 28th Dec 2023, Online 16th Jan 2024

^{1,2}Department of Biology, College of Science- Kirkuk University, Kirkuk, Iraq

Abstract: The current study aimed to study some virulence factors and test the antibiotic susceptibility of some fungi isolated from different clinical sites. This study was conducted in the Postgraduate Studies Laboratory / College of Science - University of Kirkuk. (220) samples were collected from chronic wound infections for patients hospitalized in Kirkuk General Hospital and Azadi Teaching Hospital in the city of Kirkuk. Each group included (69) samples from bed sore patients and (62) Samples from surgical infections (58) samples from diabetic foot patients and (31) samples from burn patients in the period between September to November 2023. Three types of yeast were isolated and diagnosed: Candida albicans, Candida tropical, and Candida krusei, and the most frequent ones were It is the yeast C. albicans, with 28(50%), Candida tropical, 18(32%), and C. krusei, 10(18%). Regarding virulence factors, C. albicans yeast showed the ability to form germ tubes and chlamydial spores. Chlamydospore formation While C. krusei and C. tropicalis were able to form surface growth on SDB liquid medium, the types of yeast showed different colors by growing them on chromo agar, as C. albicans was light green and C. krusei was pink. Light while C. tropicalis yeast has a metallic blue color. Regarding the drug sensitivity test, the results showed that all types of yeast were sensitive to the antibiotic Nystatin, reaching the diameters of inhibition. As for Amphotericin, all types of yeast were sensitive to it, and it was the most effective antibiotic among all types, with a rate of 100%. On the other hand, it was observed that the types of yeast were 100% sensitive, with the exception of two isolates of the type C. krusei, which were resistant to the antibiotic Clotrimazole, and to the antibiotic Ketoconazole. All types showed sensitivity to this antibiotic, except for one isolate, the yeast C. krusei, which was resistant to this antibiotic.

Key words: C. albicans; antibiotic susceptibility; wounds; virulence factors.

Introduction

Chronic wound infections are defined as wounds that do not heal as quickly as expected over a period longer than 6 weeks, often lacking recovery of normal function even after 3 months [1]. Compared with acute wounds, chronic wounds have the characteristics of delayed or even non-healing. The prevalence of chronic wounds is estimated to range from 1% to 4% [2]. Tumors, inadequate nutrition, and chronic mechanical stress have also been confirmed as major factors causing poor wound healing [3]. Chronic wounds are thought to be colonized by multiorganismal communities containing bacteria and fungi. Multiorganism interactions during wound infections contribute to persistent inflammation and delayed healing [4-6]. According to an analysis of historical data for the Medicare program, the cost of treating non-healing wounds is estimated to be between \$28.1 and \$96.8 billion [7]. The value of wound treatment and care is approximately \$18.22 billion and is expected to reach \$26.24 billion globally in 2023 according to the latest wound care market report. More than 38 million chronic wound infections occur as a result of treatment failure to heal wounds and are associated with a poor prognosis [8]. The wound microbiome that forms as a result of the colonization of bacteria and fungi is thought to hinder the healing process and cause the development of chronic wounds through community-based microbiota processes [9]. Fungal species were reported to be present in 23% of chronic wounds received for a study of 915 cases, including diabetic foot ulcers, pressure ulcers, non-healing surgical wounds, and venous ulcers. Although Candida spp yeast species have the highest prevalence [10]. Data indicate that the prevalence of fungal-infected diabetic wounds ranges between 9%-40.1%, and the major fungal species include C.

albicans, C .tropicalis, Candida parapsilosis, and Candida guillermondii, followed by Aspergillus flavus, Aspergillus niger, and Fusarium spp [11]. Analysis of the prevalence of fungi in 152 ulcers in the lower extremities and surrounding skin showed that 6% of ulcer samples and 27.6% of skin samples were positive for the presence of three fungal species, namely Candida albicans, Candida parapsilosis, and Candida ciferr Therefore, the current study aimed to study some virulence factors and test the antibiotic susceptibility of some fungi isolated from different clinical sites.

Materials and Methods

Sample collection

The current study was conducted in Kirkuk Governorate for the period from September to November 2023. 220 samples were collected from patients with chronic wound infections lying in Kirkuk General Hospital, Azadi Teaching Hospital, and the Burns Center in Azadi Teaching Hospital. Samples began to be collected from patients after wearing personal protective equipment and using... Swabs containing preservative medium Amis media. The sample was taken from the festering the areas and samples infection transferred to the fungi laboratory in the College of Science. The initial examination was conducted for the presence of fungi and yeasts by microscopic examination using (10%) KOH. At the same time, the samples were planted using cotton swab on media containing the medium. Sabouraud Dextrose Agar The dishes were incubated at 37°C for 72 hours.

Yeast diagnostic tests

Morphological and Microscopic diagnosis

Phenotypic characteristics of colonies growing on SDA medium are identified by observing colony color, shape, texture, odor, and height. Then, microscopic examination is done by preparing a glass slide of the colonies growing on SDA medium, where a part of the colony was taken using a vector and placed on the slide, dyed with lactophenol blue dye and covered with the cover of the slide, then examined with an optical microscope at X40 power to observe the pseudohyphae and giant spores, then a glass slide was taken. Others were sterilized, stained with gram dye, fixed over a flame, and examined under a microscope to observe sprouting [13].

Germ tube formation test

This test is used to distinguish *Candida albicans* from other types of yeast. The test was performed by placing 0.5 ml of human blood serum in sterile test tubes, then the tubes were inoculated with a small portion of the growing colonies of Candida, then the tubes were incubated at a temperature of 37°C for three days. Hours, then we take a drop of the suspension and put it on a clean glass slide, cover it with the cover of the slide and examine it under a microscope (X40 power), which revealed the presence of small tube-like cells [14].

Urease test

Transfer the yeast Candida spp to test tubes containing urea agar medium, and incubate at 37 degrees for 48 hours. This test was conducted to detect the ability of the yeasts to produce the enzyme urease, and this is indicated by the color change of the medium [15].

Antifungal Susceptibility Test

A susceptibility test to yeasts was conducted, selecting five types of antifungals: Nystatin, Ketoconazole, BClotrimazole, Amphotericin, and Fluconazol. 54 pathogenic isolates were used, 27 of which were C. albicans Calbicans, 18 Ctropicalis Candida, and 9 C.krusei yeast. Medium was used. Muller Hinton Agar. Then the antibiotic tablets were transferred using sterile forceps from the tablets' tubes to the surface of the aforementioned medium, covered with a plate cover, and covered with parafilm to protect them from contamination. They were incubated at a temperature of 37°C for a period of (24-48) hours while monitoring growth. Then they were taken out of the incubator, and it was noted that there was growth of different diameters around the antibiotic tablets. The results were read using a ruler to measure the diameters of the inhibition zone around the antifungal tablets [16].

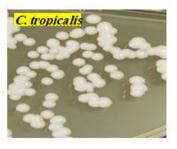
Results & Discussion

Sample collection

Direct laboratory examination of the samples was carried out using 10% KOH during the collection process, and laboratory examination after culturing the samples on SDA medium, Subroid Dextrose Agar, where the results of direct microscopic examination showed 87 positive isolates, with a positive rate of 39.54%, while the number of negative samples was 133 samples, with a rate of 60.45%. The laboratory culture results showed that there were 101 positive samples, at a rate of 45.9%, while the number of negative samples was 119, at a rate of 54.1%. No culture growth appeared, as shown in Table (1), which shows the results of the laboratory microscopic and cultural examination of the study samples.

Table (1) Number and percentages of laboratory examination and microscopic examination of samples

Testing type	Total number	Positive +ve	Percentages	Negative -ve	percentages
Microscope	220	87	39.54	133	60.46
Culture	220	101	45.90	119	54.10


Characteristics of Candida ssp. on SDA

Candida spp. Colonies appeared white to cream, spherical, convex, smooth to wrinkled, and had a typical yeast odor on the SDA plate. They developed rapidly within 24 hours and matured in three days (Figure 1). SDA medium is commonly used to isolate different types of

yeasts because it is a typical medium for Candida isolation, enabling it to grow while inhibiting the growth of many types of bacteria due to the low pH of the medium and the addition of antibacterial. It increases the selectivity of the medium [17].

(SIAN

Figure (1): Candida spp. colonies on SDA medium at 37°C for a period of (24-48)

Germ tube production

Germ tube testing is frequently used to obtain a prior diagnosis of *C. albicans* [18]. The ideal standard for differentiating *Candida albicans* from other *Candida* species is the germ tube test, which is the fastest, simplest, and inexpensive test available [17]. In this study, all 28 *C. albicans* isolates formed a short, one-piece germ tube after 2 h of incubation following inoculation of 2 ml of serum with a

portion of the colony, which distinguishes them from non-white species; There was no restriction of the germ tube at the point of contact with the yeast cells (Figure 2). Tubular extensions indicate a step in the evolution of true hyphae. *C. albicans* germ tubes developed within three hours of incubation, distinguishing them from other fungi. Other yeasts do not usually form germ tubes in this period of time, and this is consistent with the findings of [19].

Figure (2): Germination tube formation in C *albicans* (under 40X power)

Urease test

The results show that all Candida isolates are unable to degrade urea, due to their inability to produce the urease enzyme. These are consistent with the results of previous studies conducted by Ellis et al., [20]. The test is used as a diagnostic feature to differentiate between yeast species.

Table (2): urease test of Candida isolates

Yeast type	Urease test	
C. albicans	-	
C. tropicalis	-	
C. krusei	-	

Antibiotic susceptibility

Four types of antifungals were used: Amphotericin, Nystatin, Ketoconazole, Clotrimazole, and Candida spp., with 56 yeast isolates. The current study showed that all species of Candida spp yeast were sensitive to the antifungal Nystatin, as the diameters of inhibition ranged between 18-25 mm, 16-21 mm, and 15-20 mm for the yeasts C. albicans, C. tropicalis, and C. krusei, respectively. Table (5) and Figure (2). These results are consistent with AL-Maliki & AL-Ani, [21] who stated that the yeasts of C.albicans, C.tropicalis, and C.krusei were sensitive to Nystatin, while they did not agree with what It was concluded by Al-Janabi, [22], who indicated that the antibiotic Nystatin did not have any inhibitory effect on resistant Candida species. It also did not agree with Salehei et al., [23] and Mahmoudabadi et al., [24] who found that all types of C.kruse, C.tropicalis, and C.albicans are resistant to Nystatin. Espinel-Ingroff, [25] stated that the reason for the effect of Nystatin on Candida yeast may be due to its combination with the components of sterols present in the cell membrane, which leads to the exudation of important cellular components and thus cell death. Random and repeated use of this antibiotic leads to the emergence of resistant types of Candida spp. yeast, so it is natural that It varies from one type to another, and also varies depending on the source from which this type is taken [26].

Table (3): The effect of Nystatin on some types of Candida spp.

Yeast type	Inhibition diameter in millimeters
C. albicans	18-25
C. tropicalis	16-21
C. krusei	15-20

As for the antifungal Clotrimazole, it caused allergic reactions in all types, as the diameters of inhibition ranged between 20-24 mm, 17-22 mm, and 15-17 mm for the yeasts C. albicans, C. tropicalis, and C. krusei, respectively, according to Table No. (4) and Figure (3). These results are consistent with (AL-Maliki & AL-Ani, [21] and Hussein et al., [27]. The

mechanism of action of the azole antifungal is to inhibit cytochrome P450 oxidase. Inhibiting the action of this enzyme leads to preventing the formation of ergosterol from the fungal cell wall, as it causes many holes. It also works to disrupt oxidation enzymes associated with the plasma membrane, in addition to the accumulation of phospholipids. within the cell and thus its death [28].

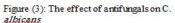
Table (4): The effect of Clotrimazole on some types of Candida spp.

Yeast type	Inhibition diameter in millimeters
C. albicans	20-24
C. tropicalis	17-22
C. krusei	15-17

As for the antifungal Ketoconazole, all species showed sensitivity to this antibiotic, with the exception of two isolates of the yeast C.krusei that were resistant to this antibiotic, as the diameters of inhibition ranged between 22-32 mm, 19-28 mm, and 9-21 mm for the yeasts C. albicans, C. tropicalis and C. krusei, respectively, according to Table (5) and Figure (4). These results are consistent with Awari,

[29] and Rajeevan et al., [30]. They found that there were types of C.krusei that were resistant to this antibiotic. It did not agree with Salehei et al., [23]. Which stated that all types of C.krasei were 100% sensitive to the antibiotic, according to Table No. (5). This antibiotic has high inhibitory activity against yeasts, but it has harmful effects in the liver [31].

Table (5): The effect of Ketoconazole on some types of Candida spp.


Yeast type	Inhibition diameter in millimeters	
C. albicans	22-32	
C. tropicalis	19-28	
C. krusei	9-21	

As for the antibiotic Amphotercin-B, all the studied Candida spp yeast species were sensitive to it, as the diameters of inhibition ranged between 16-21 mm, 15-19 mm, and 20-25 mm, for C. krusei, C. tropicalis, and C. albicans yeasts, respectively. Table (6) and Figure (5) agree with the findings of Lima et al., [32]. When they studied Candida spp yeast species, they were sensitive to this antibiotic, and it did not agree with Padmapriya et al., [33] who found that some types of C.tropicalis and C. albicans yeasts were resistant to this antibiotic. According to table (6). The effect of this antibiotic is on steroid compounds, as it

leads to a defect in the permeability of plasma membranes [22]. Fungal susceptibility varies from one species to another, depending on the location where samples are collected and depends on the concentration of the antibiotic. Also, excessive use of azole antibiotics indiscriminately increases the resistance of some types of yeast to these antibiotics [34]. Azole antagonists have two effects, the first on cytochrome (450P-), which works to inhibit the arcsterol resulting from the removal and deletion of α . Methstrol. As for the second effect, it results from the direct interaction of antifungals with membrane lipids, leading to the breakdown of the membrane [22].

Table (6): The effect of Amphotercin-B on some types of Candida spp.

Yeast type	Inhibition diameter in millimeters
C. albicans	16-21
C. tropicalis	15-19
C. krusei	20-25

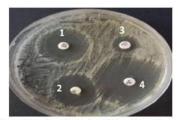


Figure (4): The effect of antifungals on C tropicalis

Figure (5): The effect of antifungals on C. knusei

References

- 1. Fonder, M. A., Lazarus, G. S., Cowan, D. A., Aronson-Cook, B., Kohli, A. R., & Mamelak, A. J. (2008). Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. *Journal of the American Academy of Dermatology*, 58(2), 185–206.
- 2. Rahim, K., Saleha, S., Zhu, X., Huo, L., Basit, A., & Franco, O. L. (2017). Bacterial contribution in chronicity of wounds. *Microbial Ecology*, 73, 710–721.
- 3. Ic, M.-C., Burgess, J. L., O'Neill, K. E., Strbo, N., & Pastar, I. (2020). Skin microbiota and its interplay with wound healing. *American Journal of Clinical Dermatology*, 21(Suppl 1), 36–43.
- 4. Hasan SA, Najati AM, Abass KS. (2019). Isolation and identification of multi-drug resistant "pseudomonas aeruginosa" from burn wound infection in Kirkuk City, Iraq. Eurasia J Biosci 13: 1045-1050
- Hamad O F., Khallil I. B., Awatif S. J. (2015). Isolated and identification some skin fungi and study effect of Laser Nd:YAG on this fungi. Kirkuk Journal of Science. 10(4): 209-221
- 6. Mohammed P. L., Najat A. Z., Hero A. O. (2021). Detection of Salmonella, Shigella

and Candida spp. in stool from diarrheal children and evaluation the heating effect on Salmonella phage in Kirkuk city. Tikrit

Journal of Pure Science. Volume 26(4): 6-11

- 7. Nussbaum, S. R., Carter, M. J., Fife, C. E., DaVanzo, J., Haught, R., Nusgart, M., & Cartwright, D. (2018). An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. *Value in Health*, *21*(1), 27–32.
- 8. Weller, C. D., Team, V., & Sussman, G. (2020a). First-line interactive wound dressing update: a comprehensive review of the evidence. Front Pharmacol. 2020; 11: 155.
- Tipton, C. D., Wolcott, R. D., Sanford, N. E., Miller, C., Pathak, G., Silzer, T. K., Sun, J., Fleming, D., Rumbaugh, K. P., & Little, T. D. (2020). Patient genetics is linked to chronic wound microbiome composition and healing. *PLoS Pathogens*, 16(6), e1008511.
- 10. Dowd, S. E., Delton Hanson, J., Rees, E., Wolcott, R. D., Zischau, A. M., Sun, Y., White, J., Smith, D. M., Kennedy, J., & Jones, C. E. (2011). Survey of fungi and yeast in polymicrobial infections in chronic wounds. *Journal of Wound Care*, 20(1),

40-47.

- 11. Bansal, E., Garg, A., Bhatia, S., Attri, A. K., & Chander, J. (2008). Spectrum of microbial flora in diabetic foot ulcers. *Indian Journal of Pathology and Microbiology*, 51(2), 204.
- 12. Lizak, M. K., Zakliczyński, M., Jarosz, A., & Zembala, M. (2009). Is There a Difference Between Patients With Peak Oxygen Consumption Below 10 mL/kg/min Versus Between 10 and 14 mL/kg/min? Does the "Grey Zone" Really Exist? *Transplantation Proceedings*, 41(8), 3190–3193.
- 13. Al-abide, N. M., Mezher, M. A., & Mahde Shugran, A. H. (2020). Identify the chemical content and biological efficacy of brassicaceae family and their effect on the growth of Candida albicans yeast isolated from various pathological infections. *EurAsian Journal of Biosciences*, 14(2).
- Forbes, B. A., Sahm, D. F., & Weissfeld,
 A. S. (2007). *Diagnostic microbiology*.
 Mosby St Louis.
- 15. MacFaddin, J. F. (2000). Individual biochemical tests. *Biochemical Tests for Identification of Medical Bacteria*, 3, 27–439.
- 16. AL-Bajilan, A. M. (2016). Study of the inhibitory of Snake venom Macrovipra lantana against the Virulence factor of vaginal Candida spp. Doctoral thesis. Tikrit University Iraq, 133pp.
- 17. Byadarahally Raju, S., & Rajappa, S. (2011). Isolation and identification of Candida from the oral cavity. *International Scholarly Research Notices*, 2011.
- 18. Madhavan, P., Jamal, F., Chong, P. P., & Ng, K. P. (2011). Identification of local clinical Candida isolates using CHROMagar Candida TM as a primary identification method for various Candida species. *Trop Biomed*, 28, 269–274.
- 19. Ibraheem, R. S., & Abbas, B. A. (2015). Study on Candida species isolated from

- cows with molecular detection of some virulence gene. *Bas. J. Vet. Res*, 14(2), 31–43.
- 20. Ellis, D. H. (1994). Clinical mycology: The human opportunistic mycosis. Gillingham. Printers pty. *Ltd. Australia.* 166p.
- 21. AL-Maliki, R., & AL-Ani, Z. (2011). Antifungal resistance of Candida species isolated from Iraqi women infected with vulvovaginal Candidiasis. *Al-Qadisiyah Medical Journal*, 7(11), 117–127.
- 22. Al-Janabi, Muhammad Sami (2017) Inhibitory effectiveness of pomegranate peel extracts, Punica grantum, on some pathogenic yeasts and bacteria. Master's thesis, College of Science, Tikrit University. 142 pages.
- 23. Salehei, Z., Seifi, Z., & Mahmoudabadi, A. (2012). Sensitivity of vaginal isolates of Candida to eight antifungal drugs isolated from Ahvaz, Iran. *Jundishapur Journal of Microbiology*, *5*(4), 574–577.
- 24. Mahmoudabadi, A. Z., Zarrin, M., & Fard, M. B. (2012). Antifungal susceptibility of Candida species isolated from candidura. *Jundishapur Journal of Microbiology*, 6(1), 24–28.
- 25. Espinel-Ingroff, A. (2008). Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. *Revista Iberoamericana de Micología*, 25(2), 101.
- 26. Mohammed, N. A. (2012). Detection of Candida spp. and other pathogens responsible for vulvovaginitis in women with contraceptive methods. MSc thesis. College of Science, University of Baghdad, Iraq.
- 27. Hussein, H. S., Dheeb, B. I., & Hamada, T. A. (2019). Studying the candida resistance and sensitivity for some antifungals. *Journal of Biotechnology Research Center*, 13(2), 26–34.
- 28. Mohammed B. A., Bare L. M., Mohammed B. K. (2019). Detection of Candida albicans in Females Urinary Tract Infection by using

- Microscopical and Cultural Methods of Urine Samples in Kirkuk City - Iraq. Journal of Global Pharma Technology. 11(05): 640-644
- 29. Awari, A. (2011). Species distribution and antifungal susceptibility profile of Candida isolated from urine samples. *Int J App Basic Med Res*, *18*, 228–234.
- 30. Rajeevan, S., Thomas, M., & Appalaraju, B. (2016). Characterisation and antifungal susceptibility pattern of Candida species isolated from various clinical samples at a tertiary care Centre in South India. *Indian J Microbiol Res*, *3*(1), 53–57.
- 31. Re III, V. Lo, Carbonari, D. M., Lewis, J. D., Forde, K. A., Goldberg, D. S., Reddy, K. R., Haynes, K., Roy, J. A., Sha, D., & Marks, A. R. (2016). Oral azole antifungal medications and risk of acute liver injury, overall and by chronic liver disease status. *The American Journal of Medicine*, *129*(3), 283–291.

- 32. Lima, G. M. E., Nunes, M. de O., Chang, M. R., Tsujisaki, R. A. de S., Nunes, J. de O., Taira, C. L., Thomaz, D. Y., Negro, G. M. B. Del, Mendes, R. P., & Paniago, A. M. M. (2017). Identification and antifungal susceptibility of Candida species isolated from the urine of patients in a university hospital in Brazil. *Revista Do Instituto de Medicina Tropical de São Paulo*, 59.
- 33. Padmapriya, G. A. A., Amshavathani, S. K., & Percy, Q. (2015). Molecular confirmation of Candida species using self designed primers by PCR. *International Journal of Current Microbiology and Applied Sciences*, 4(5), 289–294.
- 34. Mohammed B. l, Kalil I. B. Thekra A. H. (2015). Prevalence of Vaginal Candidiasis among women and Diagnosis of Candida species from vaginal infection in Kirkuk city. Tikrit Journal of Pure Science. 20(4): 5-1

