

Volume: 04 Issue: 05 | Sep-Oct 2023 ISSN: 2660-4159

http://cajmns.centralasianstudies.org

Оценка Клеточного Лимфоцитарного Иммунитета При Инфекционном Мононуклеозе Эпштейна-Барр-Вирусной Этиологии У Взрослых

1. Келдиёрова Зилола Дониёровна

Received 2nd Aug 2023, Accepted 19th Aug 2023, Online 6th Sep 2023

¹ Бухарский государственный медицинский институт имени Абу Али ибн Сино, Узбекистан, г. Бухара

При Резюме: оценке показателей клеточного иммунитета у взрослых больных с инфекционным мононуклеозом Эпштейна-Барр-вирусной этиологии и острым бактериальным тонзиллитом был выявлен целый ряд изменений относительно клинически здоровых доноров с достоверными межгрупповыми различиями, позволяющими определить дифференциально-диагностические критерии инфекционного процесса определенной этиологии.

Ключевые слова: инфекционного мононуклеоз, клеточного иммунитета, инфекционного процесса.

Актуальность. Особое место среди герпесвирусов занимает инфекция, вызванная вирусом Эпштейна-Барр (ВЭБ) – Эпштейна-Барр-вирусная инфекция (ВЭБ – инфекция), относится к наиболее актуальным и распространенным заболеваниям в современной педиатрии и детской инфектологии, а также среди взрослого населения [1,2]. Одной из часто встречаемых форм ВЭБ-инфекции является инфекционный мононуклеоз (MM) [3,4].вирусологических, иммунологических и молекулярно-биологических методов обследования в клинической практике позволило установить широкую распространенность Эпштейна-Баррвирусной инфекции и ее роль в формировании патологии иммунной системы различной степени выраженности [5]. Активная пролиферация вируса во всех органах и системах, имеющих лимфоидную ткань, приводит к структурным изменениям, оказывающим неблагоприятное воздействие на организм в целом. [7]. Вирус Эпштейна-Барр обладает множественными механизмами иммуносупрессии и ускользания от иммунного ответа хозяина, что может приводить к формированию хронической вирусной инфекции, в ходе которой иммунологические нарушения усугубляются. Также установлено, что ВЭБ нарушает механизмы иммунного ответа, подавляет продукцию интерферонов, блокирует механизмы На основе этих нарушений формируется вторичный иммунодефицит, апоптоза. [6]. способствующий формированию аутоиммунных и опухолевых процессов у генетически предрасположенных лиц. [8].

Иммунные нарушения при инфекционном мононуклеозе носят комплексный характер, они касаются как клеточного, так и гуморального звена, влекут за собой утяжеление течения, учащение осложнений заболевания, что отражает суть инфекционного мононуклеоза как болезни иммунной системы [9]. Анализ состояния иммунного статуса во взаимосвязи с

изменениями цитокинового спектра у детей, больных инфекционным мононуклеозом, в доступной нам литературе до настоящего времени не проводился, что и послужило основанием для постановки цели проводимого исследования.[10].

Целью исследования: При анализе популяционного и субпопуляционного состава лимфоцитов, наибольшие изменения были выявлены при инфекционном мононуклеозе. Так, общее содержание T-лимфоцитов ($CD3^+$) и доли среди них $CD8^+$ -клеток достоверно возрастало у больных инфекционным мононуклеозом, тогда как при остром бактериальном тонзиллите данные показатели находились в пределах значений клинически здоровых доноров.

Материалы и методы исследования. Нами проведены исследования иммунной системы у 25 больных инфекционным мононуклеозом и 25 больных острым бактериальным тонзиллитом, которые составили основную группу. В то же время 25 контрольной группы было проведено иммунологическое обследование в период обострения заболевания и в стадии ремиссии. Показатели клеточного иммунитета у всех с инфекционным мононуклеозом сравнивали с показателями контрольной группы больных. Средний возраст обследованных детей составил 20,5±0,45. Все обследованные получали общепринятые лечебные мероприятия.

Результаты исследования. Сходный разнонаправленный характер изменений, в виде снижения показателей при ИМ и сохранения нормального уровня реагирования при ОБТ, был выявлен в отношении $\mathrm{CD4}^+$ - лимфоцитов, их соотношения с содержанием Т-цитотоксических ($\mathrm{CD8}^+$), В-лимфоцитов ($\mathrm{CD19}^+$) и относительного содержания NK-клеток ($\mathrm{CD16}^+$) (таблица 1, рисунок 1). Снижение иммунорегуляторного индекса $\mathrm{CD4}^+/\mathrm{CD8}^+$ до 0.4 ± 0.02 у больных инфекционным мононуклеозом позволяет предположить о возможном присоединении вторичной бактериальной инфекции. Несмотря на то что NK-клетки врожденного иммунитета также принимают активное участие в противовирусной защите, выявленный факт их достоверного снижения у больных ИМ может свидетельствовать о ведущей роли Т-киллеров в уничтожении вируса Эпштейна-Барр.

Таблица 1. Изменение показателей лимфоцитарного иммунитета у пациентов с инфекционным мононуклеозом ВЭБ-этиологии и острым бактериальным тонзиллитом (М±м,р)

Показатель	Инфекционный	Острый бактериальный	Контроль (здоровые		
/группа	мононуклеоз (n=25)	тонзиллит (n=25)	доноры) (n=25)		
Лимфоциты, %	52,4±3,90#	22,6±3,6*	43,7±4,5		
Лимфоциты, абс.	3,5±0,50#	1,7±0,2*	3,2±0,5		
CD3 (+), %	87,1±1,80*#	73,4±2,5	73,2±2,5		
СD3 (+), абс.	2,7±0,30#	1,3±0,21	2,3±0,4		
CD4 (+), %	22,6±2,00*#	44,1±1,9	42,1±1,8		
СD4 (+), абс.	0,7±0,10*	0,8±0,10*	1,3±0,2		
CD8 (+), %	63,3±2,80*#	31,9±1,80	33,7±1,6		
СD8 (+), абс.	1 2,0±0,20*#	0,6±0,10*	1,1±0,2		
CD4 (+)/CD8 (+), y.e.	0,4±0,02*#	1,4±0,10	1,3±0,1		
CD19 (+), %	2,6±0,60*#	12,1±1,10	10,0±1,32		
СD19 (+), абс.	0,1±0,01*#	0,2±0,01*	0,3±0,10		
CD16 (+), %	9,4±1,70*#	14,3±2,80	16,2±2,40		
СD16 (+), абс.	0,3±0,10*	0,2±0,01*	0,5±0,10		

Примечание: * - достоверность отличий от контроля (p<0,01); # - достоверные различия в клинических группах

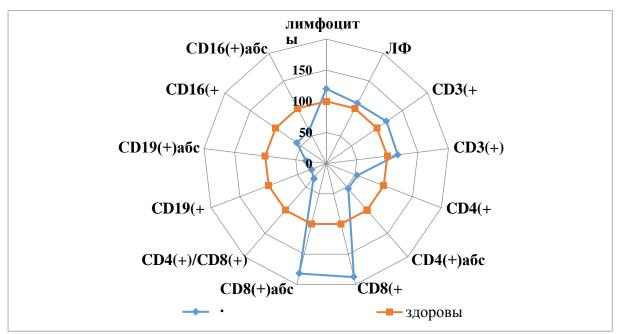


Рис. 1. Сравнительная оценка основных популяций и субпопуляций лимфоцитов у больных инфекционным мононуклеозом

Тем не менее, с точки зрения иммунопатогенеза инфекционного мононуклеоза, наиболее диагностически значимыми показателями следует считать двукратное увеличение цитотоксических Т-клеток и резкое снижение содержания (в 4,5 раза) В-лимфоцитов, что может быть обусловлено биологическими особенностями вируса Эпштейна-Барр, к которому на В-лимфоцитах имеются специфические рецепторы – CD21.

При исследовании корреляционных взаимосвязей между показателями клеточного иммунитета и активностью ферментов лимфоцитов установлена выраженная обратная связь между процентным содержанием ${\rm CD19}^+$ -клеток и активностью ${\rm K\Phi}$ лимфоцитов (r=-0,76). Установлена умеренная корреляционная связь между процентным и абсолютным содержанием ${\rm CD19}^+$ -клеток и уровнем ${\rm IL}$ -1 α (0,46 и 0,43, соответственно) (таблица 2).

Таблица 2. Корреляционная зависимость показателей клеточного иммунитета и активности ферментов лимфоцитов

Показатель	L	Лф	ЛФ абс.	CD19(+)%	СD19(+)абс	MFICD19
СЦИ-КФ	-0,07	-0,01	0,05	-0,76	-0,50	0,30
0 ст. (нул. акт.)	-0,12	0,20	-0,08	0,65	0,42	-0,09
1 ст. (низ. акт.)	0,56	-0,04	0,25	0,64	0,53	-0,44
2 ст. (ум. акт.)	-0,20	0,00	-0,08	-0,27	-0,18	-0,02
3 ст. (выс. акт.)	-0,28	-0,06	-0,11	-0,80	-0,61	0,45
СЦИ-α-НАЭ	-0,29	-0,03	-0,30	0,31	0,09	-0,69
0 ст. (нул. акт.)	-0,55	-0,30	-0,42	-0,23	-0,33	0,21
1 ст. (низ. акт.)	0,47	0,13	0,46	-0,26	0,02	0,63
2 ст. (ум. акт.)	-0,71	-0,27	-0,67	0,21	-0,18	-0,43
3 ст. (выс. акт.)	-0,20	-0,03	-0,24	0,27	0,09	-0,74
α-НАЭ+	0,48	0,05	0,28	-0,02	0,07	-0,21
КФ+	0,25	-0,15	0,14	-0,56	-0,34	0,08

Примечание: L – лейкоциты, $\Lambda\Phi$ – лимфоциты, α -НАЭ+ - клетки, содержащие окрашенный фермент (1-3 степени), $K\Phi$ + - клетки, содержащие окрашенный фермент (1-3 степени)

Published by "CENTRAL ASIAN STUDIES" http://www.centralasianstudies.org

Таким образом, при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии у взрослых в периферической крови увеличивается число и доля лимфоцитов, относительное и абсолютное количество CD3⁺-клеток за счет роста числа CD8⁺-лимфоцитов, снижается количество CD4⁺-, CD16⁺- и CD19⁺-клеток, тогда как при остром бактериальном тонзиллите число и доля лимфоцитов снижается, а субпопуляционный состав лимфоцитов сохраняется в пределах значений клинически здоровых доноров.

Оценка одновременной экспрессии функционально значимых рецепторов лимфоцитов при инфекционном мононуклеозе Эпштейна - Барр-вирусной этиологии у взрослых. Учитывая биологические особенности вируса Эпштейна-Барр (расположение специфических рецепторов - CD21 на В-лимфоцитах) была проанализирована структура В-лимфоцитарной популяции с учетом клеток, одновременно несущих мембранные рецепторы (CD19, CD21, CD81) как у клинически здоровых доноров, так и у взрослых больных инфекционным мононуклеозом Эпштейна-Барр- вирусной этиологии и острым бактериальным тонзиллитом. В ходе проведенных исследований было выявлено, что среди В-лимфоцитов содержание ${\rm CD19}^{+}{\rm CD21}^{+}{\rm CD81}^{+}$ -лимфоцитов достоверно превышает уровень здоровых доноров только при остром бактериальном тонзиллите, тогда как при инфекционном мононуклеозе имеет место достоверное его снижение (таблица 3, рисунок 2).

Наряду с этим в общей популяции В-лимфоцитов, экспрессирующих СD19-антигены, обнаружены две субпопуляции, отличающиеся редукцией одного из функционально значимых CD19⁺CD21⁺CD81⁻ и CD19⁺CD21⁻ CD81⁺. При анализе содержания редуцированной по CD21-антигену субпопуляции В-клеток выявлено ее достоверное и выраженное снижение при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии, тогда как содержание CD19⁺CD81⁺CD21⁻-В-лимфоцитов было достоверно повышено при остром бактериальном тонзиллите (таблица 3, рисунок 2). При анализе содержания редуцированной по CD81- антигену субпопуляции В-лимфоцитов также выявлено ее достоверное и выраженное снижение при ИМ, тогда как при ОБТ содержание CD19⁺ CD21⁺ CD81⁻-В-клеток достоверно не отличалось ОТ показателей группы клинически здоровых доноров (таблица 3, рисунок 2).

Таблица 3. Сравнительная оценка В-лимфоцитов, одновременно экспрессирующих функционально значимые рецепторы (CD19, CD21, CD81), при инфекционном мононуклеозе и остром бактериальном тонзиллите

Показатель/группа	Инфекционный	Острый	Контроль (М±m)
	мононуклеоз (М±m)	бактериальный	
		тонзиллит	
		(M±m)	
(CD19 ⁺ CD21 ⁺ CD81 ⁺)-	↓ 1,52±0,27*	6,1±0,88* ↑	3,65±1,06
лимфоциты			
MFI 21	8,2±4,55* ↑	$3\pm0,48$	$2,5\pm0,34$
MFI 81	4,6±0,73* ↑	3,7±0,52	3,1±0,31
MFI 19	8,8±0,84* 1	7,0±0,34	6,6±0,33
(CD19 ⁺ CD21 ⁺ CD81 ⁻)	↓ 0,8±0,37*	2,7±0,64	2,2±0,57
лимфоциты			
MFI 21	4,1±0,46* ↑	2,3±0,14	2,2±0,20

MFI 19	8,8±0,84* ↑	7,0±0,34	6,6±0,33
(CD19 ⁺ CD21 ⁻ CD81 ⁺)- лимфоциты	↓ 0,4±0,05*	2,5±0,28* ↑	1,3±0,32
MFI 81	11,2±2,07* ↑	5,5±0,91	$4,7\pm0,84$
MFI 19	8,8±0,84* 1	7,0±0,34	6,6±0,33

Примечание: * - достоверность отличий от контроля (p<0,01)

При исследовании величины плотности экспрессии молекул (MFI) на поверхности Влимфоцитов, выявлено, что исключительно при инфекционном мононуклеозе Эпштейна-Баррвирусной этиологии у взрослых наблюдается достоверное ее увеличение в отношении всех видов рецепторов на трех субпопуляциях В-лимфоцитов относительно острого бактериального тонзиллита и группы клинически здоровых доноров. Так, плотность экспрессии CD19⁺рецепторов при инфекционном мононуклеозе в 1,3 раза выше группы здоровых доноров. Уровень плотности экспрессии CD21⁺-лимфоцитов, одновременно экспрессирующих на поверхности ${\rm CD19}^+$ ${\rm CD21}^+$ ${\rm CD81}^+$, в 3,3 раза превышает группу здоровых доноров, а в группе лимфоцитов, одновременно экспрессирующих CD19⁺ CD21⁺ CD81⁻, в 1,8 раз превышает группу здоровых. доноров. Уровень плотности экспрессии CD81⁺-лимфоцитов, одновременно экспрессирующих на поверхности CD19⁺ CD21⁺ CD81⁺, в 1,5 раза превышает группу клинически здоровых доноров, а в группе лимфоцитов, одновременно экспрессирующих CD19⁺ CD21 ⁻CD81⁺, в 2,4 раза превышает группу здоровых доноров. При этом уровень плотности в отношении всех видов рецепторов на трех субпопуляциях В-лимфоцитов при остром бактериальном тонзиллите достоверно от группы клинически здоровых доноров не отличался (рисунок 2).

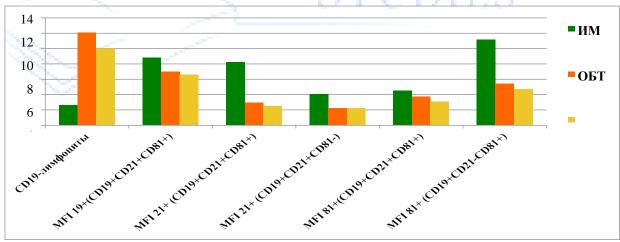


Рис. 2. Плотность распределения рецепторов (MFI) на поверхности В-лимфоцитов

Таким образом, для инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых характерен количественный дефицит CD19⁺-В-лимфоцитов, включая CD19⁺ CD21⁺ CD81⁺-, CD19⁺ CD21⁻ CD81⁺- и CD19⁺ CD21⁺ CD81⁻- лимфоциты, при достоверном увеличении плотности рецепторов CD19, CD21, CD81 в экспрессирующих их субпопуляциях В-клеток. Тогда как при остром бактериальном тонзиллите количество CD19⁺CD21⁺CD81⁺- и CD19⁺ CD21⁻ CD81⁺- лимфоцитов возрастало при неизменной плотности молекул CD19, CD21, CD81 в экспрессирующих их субпопуляциях В-клеток.

Сравнительная оценка величины плотности экспрессии молекул CD19⁺, CD21⁺, CD81⁺ при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии и остром бактериальном взрослых получить дополнительные дифференциальнотонзиллите позволяет диагностические критерии.

Алгоритм дифференциальной диагностики инфекционного мононуклеоза Эпштейна-Баррвирусной этиологии у взрослых. Для повышения качества дифференциальной диагностики инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых разработан диагностический алгоритм, включающий оценку значимости ведущих клинических симптомов и синдромов, а также результаты общеклинических исследований (ОАК, БАК), оценку цитокинового профиля, результаты цитохимической активности лимфоцитов и показатели клеточного иммунитета в виде основного субпопуляционного состава лимфоцитов с последующим определением количества В-лимфоцитов, несущих мембранные рецепторы (CD19, CD21, CD81) и определение плотности экспрессии этих рецепторов.

При наличии у больного молодого возраста, острого начала заболевания, лихорадки в течении 3-5 дней и более, острого тонзиллита и полилимфоаденопатии можно предположить диагноз «острый бактериальный тонзиллит» или «инфекционный мононуклеоз», если же определяется гепатоспленомегалия, то возможен диагноз «острый вирусный гепатит». В таком случае необходимо провести забор венозной крови на общий анализ и биохимический анализ с определением АЛТ, АСТ, общего билирубина.

При получении результата возможны несколько сочетаний признаков:

- 1) лейкоцитоз, палочкоядерный сдвиг, отсутствие атипичных мононуклеаров, нормальные значения АЛТ и АСТ, в таком случае вероятен диазгноз «острый бактериальный тонзиллит»;
- 2) лейкоцитоз, лимфоцитоз (±), атипичные мононуклеары (±), повышение АЛТ при нормальном значении АСТ, в таком случае возможны диагнозы «острый бактериальный тонзиллит» или «инфекционный мононуклеоз»;
- 3) лейкоцитоз, лимфоцитоз, атипичные мононуклеары, повышение АЛТ и АСТ, в таком случае вероятнее всего диагноз «инфекционный мононуклеоз»;
- 4) нормоцитоз, атипичные мононуклеары (±), повышение АЛТ и АСТ, повышение общего билирубина (±), в таком случае возможны диагноз «инфекционный мононуклеоз» или «острый вирусный гепатит».

Следующим этапом в диагностике станет забор венозной крови у больного на ИФА ВЭБ, ПЦР (ДНК ВЭБ), маркеры вирусных гепатитов (HBsAg, At HBcor, At HCV). Если в ИФА обнанаруживаются антитела VCA IgM ВЭБ и ДНК ВЭБ (±) при отрицательных маркерах вирусного гепатита, то диагноз «инфекционный мононуклеоз». Если обнаруживаются маркеры вирусного гепатита, то диагноз «острый вирусный гепатит». Третий возможный вариант отрицательные маркеры вирусного гепатита и отрицательные результаты ИФА и ПЦР ВЭБ при характерной клинической картине, в этом случае необходимо повторно взять ИФА ВЭБ, ПЦР (ДНК ВЭБ) и воспользоваться дополнительными методами диагностики.

Цитохимический метод (определение активности кислой фосфатазы лимфоцитов): при инфекционном мононуклеозе Эпштейна-Барр-вирусной этиологии происходит умеренное снижение активности КФ лимфоцитов (на 19,0% от среднего значения этого показателя в группе клинически здоровых доноров) при относительно равномерном распределении клеток всех степеней активности, для тяжелого течения ИМ у взрослых характерно снижение клеток с высокой (3-й ст.) активностью в 2 раза; при остром бактериальном тонзиллите снижение

активности КФ лимфоцитов происходит на 60% от значений группы клинически здоровых доноров, что в 2 раза меньше, чем при ИМ, за счет снижения содержания клеток с высокой (3-й ст.) (на 86,5%) и умеренной (2-й ст.) (на 56,0%) активностью и преобладающего увеличения (на 96,0%) содержания клеток без активности фермента (0-й ст.); при остром вирусном гепатите «В» происходит падение активности КФ лимфоцитов на 70% от показателя в группе клинически здоровых доноров, что в 3 раза меньше, чем при ИМ, за счет практического исчезновения клеток с умеренной (2-й ст.) и высокой (3-й ст.) активностью (снижение на 90,0% и 93,0% соответственно) и преобладания клеток с нулевой (0 ст.) и низкой (1-й ст.) активностью фермента.

Определение цитокинового статуса (IL-1α, IL-1β, IL-1Ra и IL-4, INF-γ): при инфекционном мононуклеозе происходит повышение уровня IL-1α (в 1,7 раза), IL-1β (в 1,6 раза) и INF-γ (в 4,3 раза), для тяжелого течения ИМ характерно двукратное повышение IL-1α и IL-1β, 7-кратный рост концентрации INF-у и повышение IL-1Ra (в 2,3 раза); при остром бактериальном тонзиллите происходит двукратное повышение уровней IL-1β и INF-γ; для острого вирусного гепатита «В» характерно резкое увеличение уровня активности IL-1β (в 18 раз), повышение INF-у (в 2,3 раза) и IL-1Ra (в 1,3 раза).

Определение общей иммунограммы с последующим определением количества В-лимфоцитов, несущих мембранные рецепторы (CD19, CD21, CD81) и определение плотности экспрессии этих рецепторов: при инфекционном мононуклеозе происходит увеличение количества CD3⁺лимфоцитов с увеличением CD8⁺-клеток и снижение числа CD4⁺-, CD16⁺-, CD19⁺лимфоцитов, включая субпопуляции с фенотипом CD19⁺ CD21⁺ CD81⁺-, CD19⁺ CD21⁻ CD81⁺- и CD19⁺ CD21⁺ CD81⁻-лимфоцитов, при увеличение плотности экспрессии CD19, CD21, CD81 рецепторов в экспрессирующих субпопуляциях В-лимфоцитов; при остром бактериальном тонзиллите происходит снижение общего числа лимфоцитов, при сохранении нормального уровня CD3⁺-, CD4⁺-, CD8⁺-, CD16⁺-, CD19⁺-лимфоцитов, увеличения количества В-лимфоцитов в субпопуляциях CD19⁺ CD21⁺ CD81⁺- и CD19⁺ CD21⁻ CD81⁺клеток при нормальных значениях плотности экспрессии CD19, CD21, CD81 рецепторов в экспрессирующих субпопуляциях В-лимфоцитов.

Выводы. Таким образом, применение данного алгоритма может повысить качество дифференциальной диагностики инфекционного мононуклеоза Эпштейна-Барр-вирусной этиологии у взрослых, что позволит своевременно скоректировать тактику ведения и приведет к сокращению срока стационарного лечения и медико-социальной реабилитации.

Использованные литературы.

- 1. Balfour H.H., Odumade O.A. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus. Infection in university students//J. Infect.Dis.-2013.Vol.207.-P.80-88.
- 2. Keldiyorova Z.D., // State of the immune system in children with infectious mononucleosis.// New day in medicine. Eyxopo -1 (33) 2021. C. 283-286
- 3. Keldiyorova, Z. D. (2022). Analysis of the results of immunological examination in infectious моnonucleosis in Children. Middle european scientific bulletin. Europea, 23, 255-258.
- 4. Keldiyorova, Z. D. (2022). Immunological features of infectious mononucleosis in children. Инфекция, иммунитет и фармакология, 3, 110-116.

- 5. Keldiyorova, Z. D. (2023). CLINICAL CHARACTERISTICS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS. Galaxy International Interdisciplinary Research Journal, 11(4), 410-414.
- 6. Keldiyorova, Z. D. (2023). CLINICAL CHARACTERISTICS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS. Galaxy International Interdisciplinary Research Journal, 11(4), 410-414.
- 7. Keldiyorova, Z. D. (2023). CLINICAL CHARACTERISTICS IN PATIENTS WITH INFECTIOUS MONONUCLEOSIS. Galaxy International Interdisciplinary Research Journal, 11(4), 410-414.
- 8. Keldiyorova, Z. D. (2023). STATE OF CELLULAR IMMUNE IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS. Oriental renaissance: Innovative, educational, natural and social sciences, 3(2), 926-931. Келдиёрова, 3. Д. НОВЫЙ ДЕНЬ В МЕДИЦИНЕ. НОВЫЙ ДЕНЬ В МЕДИЦИНЕ Учредители: Бухарский государственный медицинский институт, ООО" Новый день в медицине", (2), 231-234.
- 9. Keldiyorova, Z. D. (2023). STATE OF CELLULAR IMMUNE IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS. Oriental renaissance: Innovative, educational, natural and social sciences, 3(2), 926-931.
- 10. Keldiyorova, Z. D. (2023). STATE OF CELLULAR IMMUNE IN CHILDREN WITH INFECTIOUS MONONUCLEOSIS. Oriental renaissance: Innovative, educational, natural and social sciences, 3(2), 926-931.
- 11. Narzullayev, N. U., Mirzoyeva, M. R., & KELDIYOROVA, Z. D. (2020). Immunological features of infectious mononucleosis Epstein-Barr virus etiology in children. International Journal of Pharmaceutical Research (09752366), 12(3).
- 12. Ulug M., Celen M. K., Ayaz C., Geyik M. F., Hosoglu S. Acute hepatitis: a rare complication of Epstein- Barr virus (EBV) infection // J. Infect Dev Ctries. - 2010. - № 28:4(10). - P. 668-673.
- 13. Valentini P., Angelone D. F., MiceliSopo S., Ngalikpima C. J., Ranno O. Cholestatic jaundice in infectious mononucleosis // Minerva pediat. - 2018. - Vol. 52. - № 5-6. - P. 303-306.
- 14. Белозеров Е. С. Иммунодефициты и донозологические формы иммуносупрессии / Е. С. Белозеров, Н. К. Шагшарданов, Е. И. Змушко. - Семипалатинск, 2008. - С. 141—163.
- 15. Волоха А. П. Эпштейна-Барр вирусная инфекция у детей // Современная педиатрия. 2015. -№ 4 (68). - C. 103
- 16. Келдиёрова З.Д. Иммунологические особенности инфекционного мононуклеоза эпштейнабарр-вирусной этиологии у детей.// Новый день в медицине. Бухоро - №2 (34). 2021. С. 231-234
- 17. Келдиёрова З.Д. Состояние иммунной системы у детей с инфекционным мононуклеозом и обоснование иммунокорригирующей терапии.// Central Asian Journal Of Medical and Natural Sciences.
- 18. Келдиёрова, З. (2022). Состояние иммунной системы при инфекционном мононуклеозе у детей. Журнал" Медицина и инновации", (3), 322-330.
- 19. Келдиёрова, 3. (2022). Состояние иммунной системы при инфекционном мононуклеозе у детей. Журнал" Медицина и инновации", (3), 322-330.

- 20. Келдиёрова, 3. (2022). Состояние иммунной системы при инфекционном мононуклеозе у детей. Журнал" Медицина и инновации", (3), 322-330.
- 21. Келдиёрова, 3. Д. (2021). Иммунологические особенности инфекционного мононуклеоза эпштейна-барр-вирусной этиологии у детей. Новый день в медицине. Бухоро, 2, 34.
- 22. Келдиёрова, З. Д. (2021). Иммунологические особенности инфекционного мононуклеоза эпштейна-барр-вирусной этиологии у детей. Новый день в медицине. Бухоро, 2, 34.
- 23. Келдиёрова, 3. Д. (2021). Состояние иммунной системы у детей с инфекционным мононуклеозом и обоснование иммунокорригирующей терапии. Central Asian Journal of Medical and Natural Science, 258-265.
- 24. Нарзуллаев, Н. У., Мирзаева, М. Р., & Келдиёрова, З. Д. (2020). Цитокиновый Профиль Детей С Острым Воспалением Небных Миндалин При Остром Инфекционном Мононуклеозе На Фоне Лечения. Новый день в медицине, (2), 459-461.
- 25. Спиридович В.И., Кастусик С.В., Кудин А.П. Оценка эффективности разных методов терапии инфекционного мононуклеоза у детей // Медицинский журнал .2012. №3.-С.148-151.
- 26. Филатова Е. Н., Солнцев Л. А., Уткин О.В. Влияние сезонных факторов на динамику уровня заболеваемости инфекционным мононуклеозом в разных возрастных группах (на примере Нижнего Новгорода)// Эпидемиология и инфекционные болезни. - М., 2017. - №2. -С. 79-85.

