CENTRAL ASIAN JOURNAL OF MEDICAL AND NATURAL SCIENCES

Volume: 03 Issue: 05 | Sep-Oct 2022 ISSN: 2660-4159

www.cajmns.centralasianstudies.org/index.php

Machine Learning Based Mammogram Classification for Breast Cancer Diagnosis Using Neural Networks

R. Akashraj¹ A. Muthukumaravel²

EMAIL:

Received 26th August 2022, Accepted 17th SEP 2022, Online 24th OCT 2022

¹Master of Science, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India.

¹Dean -Arts & Science, Department of Computer Science, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India. dean.arts@bharathuniv.ac.in ABSTRACT: Among females, breast cancer is high as a major killer. Breast cancer is easily diagnosed when anomalies are spotted in their earliest stages. Accurately diagnosing breast cancer and treating patients as soon as possible will be facilitated by effective diagnostic technologies. Experiments were performed to determine if breast cancers were benign or malignant using data from the Wisconsin Diagnosis Breast Cancer database. To do this, we employ the supervised learning algorithm Support Vector Machine (SVM) with kernels such as Linear and Neural Networks (NN). Comparing the models' results reveals that the Neural Network technique is more "accurate" and "precise" than the Support Vector Machine in the categorization of breast cancer and appears to be a quick and efficient method.

Keywords: Machine Learning, Mammogram, Breast Cancer, Diagnosis, Neural Networks, Support Vector Machine

INTRODUCTION

Breast cancer kills many women. Early breast abnormalities help radiologist diagnose breast cancer. Efficient breast cancer diagnostic techniques enable doctors make accurate diagnoses and treat patients quickly [1]. In this study, breast cancer was classified using the Wisconsin Diagnosis Breast Cancer database. Support Vector Machine (SVM) with Linear and Neural Networks (NN) kernels are utilised for comparison. Neural Networks deliver higher 'accuracy' and 'precision' than SVMs in breast cancer categorization. ANN appears quick and effective. Our project employed these algorithms: Existing SVM and suggested ANN are compared for accuracy [2-5]. Semi-supervised learning has gained popularity because it reduces the need for huge labelled datasets to train deep neural network models. Getting tagged data can be expensive and/or time-consuming [6-12]. Labeling or segmenting massive medical imaging data requires professional radiologists or technologists. Segmenting each Imaging techniques fall into two categories: analogue and

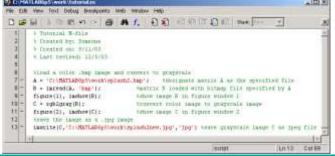
Published by "CENTRAL ASIAN STUDIES" http://www.centralasianstudies.org

Copyright (c) 2022 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

digital. Hard copies, such as printouts and photographs, can benefit from analogue or visual image processing methods [13-19]. When analysing images, analysts rely on a wide range of interpretation principles [20]. The field of image processing encompasses more than just the expertise of analysts, though that is certainly important. Visual association is another powerful technique used in image processing [21-26]. Because of this, analysts use a mix of their own expertise and other data while analysing images. As the raw data from imaging sensors on satellite platforms has flaws, digital processing techniques help modify digital images with the use of computers [27-31]. To overcome these issues and obtain authentic data, it must go through several stages of processing [32-38]. When dealing with digital technology, there are three main steps that must be taken before any type of data can be used: pre-processing, enhancement and presentation, and information extraction [39-45]. Figure 1 shows the image processing hierarchy [46].



Fig.1: Hierarchy of Image Processing [1]


Images in Matlab

Knowing that a digital image is made up of a two- or three-dimensional matrix of pixels is the first step in processing digital images with MATLAB [47-52]. Each pixel in a picture stores a number or integers that denote its hue, saturation, and lightness. Depending on the colour representation technique, colour images can have up to three times the amount of information of grayscale images [53-61]. As a result, the amount of computing power required to process a colour image is three times that of a monochrome one. In this article, we will show you how to change colour photographs into grayscale so that we can work with them more easily. However, we will start with the analysis of basic two-dimensional 8-bit matrices to learn how image processing works [62-71].

Writing an Image

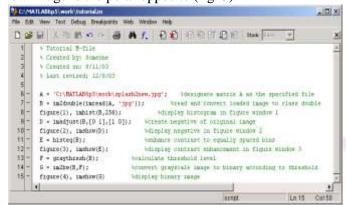

It is often necessary to save a picture so that it can be moved to a disc or opened in a different application [72]. As opposed to reading an image from a file, which is what you would normally do, you would save it to a file. The write command in MATLAB is what you need to get the job done [73-75]. Using this command, you can save a picture in any of the formats recognised by MATLAB, which are identical to those recognised by reading [76]. Figure 2 illustrates the m-file image-saving procedure.

Image Properties

To display the distribution of data, a histogram is used. Histograms are used in image processing to display the frequency distribution of pixel values. Using a histogram, it's possible to zero in on the most significant pixel values in an image [77-82]. You can use this information to customise the animation to your liking. It is possible to improve contrast and set a threshold with the help of histogram data [83]. The hist function can be used to produce a histogram from an image. The histeq function can be used to increase contrast, while the grey thresh and im2bw functions can be used to set thresholds. Using the imhist operation on the image produced by histeq will display the resulting histogram of the contrast-enhanced image. To create a picture's negative involves inverting the original image. In an 8-bit image, the pixels that were previously valued at 0 become valued at 255, while the pixels that were previously valued at 255 become valued at 0. Everything in between the two extremes has its pixel value inverted [84-89]. When compared to the original, the new image is the polar opposite (fig. 3).

Figure 3: M-file for creating histogram, negative, contrast-enhanced, and binary images. [2]

Median Filters

When it comes to cleaning up photos, a Median Filter can be a powerful tool. You might think of a median filter as a kind of average filter [90-94]. The pixel in question and its surrounding pixels' values are analysed by the averaging filter, which then calculates and returns an average. Similar pixels are examined by the median filter, but instead of a mean value, the median is provided. The median filter excels at disregarding huge disparities in pixel values, allowing for the removal of noise while preserving sharp edges [95-101]. Here, we see that when applied to the same data, not one but two median filters produce the same result. The median value of the target pixel and its neighbours is used by the first filter, medfilt2. The median value of the nine analysed pixels is returned. Ordfilt2 is a second filter that, in this setup, performs the same function. It is also flexible enough to be used for various filtering tasks [102-111]. This method examines all ninety-nine pixels in a 3x3 matrix and returns the fifth-ranked value, the median [112].

Edge Detectors

When searching for specific objects in an image, edge detectors prove invaluable. We'll focus on two of the many edge detectors available: the Sobel and the Canny. The horizontal, vertical, or both can be searched for with the Sobel edge detector. In addition to picking up on all strong edges, the Canny edge detector can also locate any linked weak ones [113-120]. The binary images provided by these edge detectors have white edges on a black background.

The first technique involves use MATLAB special to generate the filter and imfilter to apply it to the image. The alternative approach involves calling the edge MATLAB function and passing it the appropriate edge detection method. First, the Sobel approach was utilised, and then the Canny method was used for edge detection. The top image shows the raw data, while the bottom image, labelled "Horizontal Sobel," was created by applying an imfilter. When applying the edge filter, the image with the label "Sobel" is the result of utilising the Sobel setting, whereas the image with the label "Canny" uses the Canny setting. The photographs' finer points were brought out with the Zoom In function [121-125]. The filter used to generate the Horizontal Sobel image, as can be seen, picks up horizontal edges far more easily than vertical ones. Edges in both the horizontal and vertical planes were picked up by the filter used to

generate the Sobel picture. Due to MATLAB's independent searches for horizontal and vertical edges and subsequent summation, this was the outcome [126]. The Canny picture is proof that the Canny technique can pick up on every edge. Unlike the Sobel approach, which only displays strongly connected edges, the Canny method displays all edges, regardless of their strength [127-131].

Project Introduction

Cancer occurs when a clump of cells in one place of the body begins to grow and divide uncontrollably. Tumors are groups of rapidly dividing cells that can manifest as a variety of abnormalities, including a mass, calcifications, or alterations to the structure of the body. Breast cancer refers to a group of diseases characterised by the development of malignant tumours from breast cells [132-139]. Breast cancer ranks among the deadliest forms of the disease. More than 400,000 women worldwide lose their lives to breast cancer every year, according to the World Health Organization's International Agency for Research on Cancer (IARC). Breast cancer prevention is now very important, and this is mostly possible through awareness of the various risk factors. Second, identifying the various signs of this condition is crucial for early detection, which is when it is most amenable to treatment. There are two main subtypes of breast cancer: invasive and non-invasive [140-146]. Invasive breast cancer occurs when malignant cells invade surrounding healthy tissue and spread to other organs. When breast cancer is classified as non-invasive, malignant cells are contained to a single breast tissue area rather than spreading to neighbouring ducts or lobules [147]. In the last decade, advances in breast analysis techniques have allowed for more accurate diagnoses. Recently, we've seen the introduction of some automatic classification methods [148-151].

The outcomes of various methods vary. However, there are still problems that need to be addressed, such as the creation of more effective methods. When we compare systems, we learn which one is the most effective, which in turn helps radiologists make more precise diagnoses [152-157]. However, there is still some error introduced by radiologists while interpreting images. Therefore, the classifier is necessary for the goal of automatically interpreting images or for an automated categorization system. Neural Networks (NN) and Support Vector Machines (SVM) are two of the numerous methods currently in use for classification, although they often produce the best results. This paper contrasts NN with support vector machines [158].

When it comes to female cancers, breast cancer is by far the most prevalent and second-leading killer. Mammograms often show cancers and masses in the breast as dense areas. Unlike malignant tumours, which typically have a jagged, rough, and hazy perimeter, benign masses are typically round, smooth, and well-circumscribed. Screening mammography CAD systems provide radiologists with a second view by highlighting areas where a high malignancy risk is present. CAD's end goal is to provide pinpoint indication of these spots. Studies conducted on the topic so far tend to agree that CAD technology aids in the diagnosis of breast cancer at an early stage [159]. The creation and assessment of mammography CAD systems have been the subject of a lot of published work. The majority of the suggested system is structured in a hierarchical fashion. To begin, a mammography is prescreened by the CAD system to look for potentially problematic areas in the breast parenchyma. This initial step utilises a Gaussian smoothing filter, top hat operation for image improvement, and the original grey tone image, allowing for more sensitive lesion site selection using the improved images. The second step is to create a thresholding technique for tumour area segmentation. SVM is a learning machine that has been successful in many applications thanks to its generalisation ability, such as data classification, function approximation, etc. By increasing the distance between the hyperplane and the dataset, SVM is able to minimise the generalisation error and place a lower constraint on the error. The appropriate number of basis functions and their positions are automatically computed during training, giving SVM the added benefit of automatic model selection. SVM's efficiency is heavily reliant on the hardware's kernel.

System Study Feasibility Study

In this stage, the project's viability is assessed, and a business proposal outlining the project's broad strokes and some preliminary cost estimates is presented. A feasibility assessment of the proposed system is to be conducted during system analysis. This makes sure the suggested solution won't cost the business too much. Feasibility analysis relies heavily on a thorough familiarity with the system's most pressing needs. A feasibility analysis delves into the nature

495

of the issue and the information requirements of the many parties involved. Its goal is to calculate how much time and money will be needed to implement an information systems solution, how much good it will do, and whether or not it's even possible. The purpose of the feasibility study is to examine potential solutions to the organization's information systems issues, assess their viability, and then recommend the most promising one. A solution's viability is determined by analysing each of its constituent parts.

Economic Feasibility

The purpose of the analysis is to determine how much money the system will cost the company. The corporation can only devote so many resources to the system's development at this time. All costs must be adequately explained. Because so many of the underlying technologies are open source, the designed system may be implemented without breaking the bank. The only things that were required to be bought were the personalised ones.

Technical Feasibility

The purpose of this research is to determine whether or not the technical specifications of the system are actually achievable. For technical feasibility, any new system can't place an excessive load on existing infrastructure. That will put a strain on our technological infrastructure. As a result, the client will have to meet stringent requirements. The developed system should have low requirements, as implementing it should involve few or no changes.

Social Feasibility

Examining how well received the system is by its end users is a key part of the research. Part of this is teaching the user how to get the most of the technology. Instead of feeling frightened by the system, the user should view it as something they need in order to function. User adoption is directly proportional to the effort put into familiarising and training each individual user. His self-assurance needs to be bolstered so that, as the system's end user, he can provide some constructive feedback, which is always appreciated.

Operational Feasibility

Willingness, ability, and interest of stakeholders to utilise, support, and run the proposed computer information system. Management, staff, customers, and vendors are all considered stakeholders. Stakeholders care about whether or whether a system is intuitive to use, prone to minimal mistakes, reliably generates the expected results, and consistent with the organization's goals.

Existing System Support Vector Machine (SVM):

The main process of the SVM is to identify an optimal hyperplane for many diverse cases in a high-dimensional space. More than one hyperplane exists so that this model holds true. The bolster vector is the data that is closest to the closed surface and aligns with the optimal choice surface, making it crucial to this procedure. It classifies data by plotting input vectors in a high-dimensional space and building the hyperplane to partition the information. Specifically, this method is employed to resolve a non-convex, unconstrained minimization problem and a quadratic programming problem. When it comes to classifier processes, SVM is superior.

Proposed System Artificial Neural Network (ANN):

Artificial neural networks (ANNs) are a specific type of neural network characterised by a temporal sequence graph formed by the links between nodes. In this way, it is able to display temporal dynamics in its behaviour. Adapted from feed-forward neural networks, these networks can interpret input sequences of varying lengths by drawing on their own internal state. Because of this, they can be used for things like speech recognition or the recognition of handwriting that is not segmented. In common parlance, the phrase "recurrent neural network" is used interchangeably for both finite- and infinite-impulse networks, both of which share some structural similarities. Time-varying behaviours are seen in both types of networks. An unrolled finite impulse recurrent network can be used in place of a conventional feed-forward neural network. As opposed to finite impulse recurrent networks, infinite impulse recurrent networks are unrollable directed cyclic graphs. Additional stored states are possible in both finite- and infinite-impulse recurrent networks, with storage managed entirely inside the neural network itself. You can also use a different network or graph in place of storage if it has time delays or feedback loops built in. Memory networks (LSTMs) and gated recurrent

units include such controlled states, which are referred to as gated or gated memory. Another name for this is a "Feedback Neural Network" (FNN).

Data Dictionary

Included in the database itself is a data dictionary. It saves metadata, or details about the database and the data it stores. You may find the adbms-required database descriptions in the data dictionary. The data dictionary is typically an operational part of the DBMS. Each time a database is visited, the DBMS compares the query to the data dictionary. Due to the collaborative nature of database creation and maintenance, it can be difficult to communicate precisely what information can be entered into which fields. Therefore, a data dictionary is a useful adjunct for ensuring data uniformity. The creation of a data dictionary follows no universally accepted format. Each table has its own unique metadata. All that's required of a data dictionary is that it be searchable.

System Implementation

The building blocks of a system are created during the implementation phase (system breakdown structure). If the process to be implemented is one of production, it may be necessary to employ a manufacturing system that makes use of conventional techniques and administration methods. The purpose of the implementation process is to produce a system component that meets the specifications specified for that component during the design phase. The component is built using standard commercial methods. This phase connects the steps of defining the system to the phase of integrating it. System The implementation phase of a project is when the plan drawn out in the planning phase is put into action. Achieving a successful system and inspiring user faith that the new system will perform as intended is the most important step. Time was a major issue with the previous system. Matlab was used in the creation of the suggested system. Due to the current setup, transmission times were rather lengthy. Even so, the newly implemented system features a great user-friendly tool: a graphical user interface with a menu system. Project installation on the required system follows coding and testing. It is required to build the executable and run it. The code is retested in the production environment. The created code is implemented in the system as an executable file is installed.

Module Description

During the process of Image Acquisition, live breast images are taken. The size of the collected photos is controlled via cropping. During this phase of picture processing, the RGB images that were previously cropped are changed to grayscale. The third part is image segmentation. K-means filtering is used to divide the grayscale images into distinct regions. This aids in getting rid of issues like backdrops, lighting, etc. To facilitate categorization, images are segmented, and then features are extracted (either extracted or shown) from the segmented images. Classification, utilising both Tensor Flow and ANN, is included in the final module.

Classification

In this case, we employ an ANN-based categorization strategy. In this final section, we'll go into classification using methods from Tensor Flow and machine learning. The open-source tool for numerical computation Tensor Flow is compatible with MatLab and speeds up and simplifies machine learning. Dataflow graphs are structures that depict the flow of data across a graph or a set of processing nodes, and they may be created by developers using Tensor Flow. Each "node" in the graph stands for a different mathematical process, and each "edge" between "nodes" is a tensor or multidimensional data array.

System Testing

Testing's ultimate goal is to unearth flaws. When testing, we look for any and all issues that could compromise the quality of the final product. It's useful for verifying the operation of individual parts, whole assemblies, and even finished goods. Software testing is the practise of putting a programme through its paces to see that it doesn't break in unacceptable ways, as defined by the software's specifications and the needs of its intended users. There are many distinct kinds of examinations. Different kinds of tests are available to fulfil various needs.

Types of Tests

Unit testing

497

The goal of unit testing is to ensure that the internal logic of a programme is working as intended and that legitimate inputs will result in expected outputs. It's crucial to check the logic of all possible paths a programme could take. To put it simply, it's the process of verifying the functionality of the application's constituent parts. Before integrating, it is done after each individual unit is finished. Such intrusive structural testing requires specific information about the structure being tested. The purpose of a unit test is to validate a single business function, application, or system setup at the component level. Each branch of a business process should have its own set of unit tests to guarantee that it conforms to the stated standards and works as intended.

Integration testing

The goal of an integration test is to verify that all of a program's parts work together seamlessly. In testing, the focus is on the most fundamental results of screens and fields rather than on how they look. Even though each part was tested separately and found to be satisfactory, integration tests prove that the whole is reliable and consistent. The goal of integration testing is to reveal any issues that manifest due to the interaction of many parts.

System Test

When a software system is fully integrated, system testing is performed to ensure that the system as a whole is up to snuff. It puts a setup through its paces to make sure it always produces the same, reliable results. The configuration-oriented system integration test is a type of system test. The foundation of system testing is the documentation and modelling of processes, with an emphasis on the predetermined connections and interfaces between individual processes.

White Box Testing

To perform White Box Testing, the software tester must be familiar with the program's design, implementation, and language, or at least its intended function. In other words, it's about having a reason for living. In other words, it probes inaccessible depths at the black box level.

Black Box Testing

Without knowing the specifics of the module being tested, or even the language it was written in, testers perform "black box" testing. Similarly to other types of testing, black box tests require a definite source document, such as a specification or requirements document, from which to derive their own implementation. Testing in which the target programme is ignored entirely. You simply can't "see" into it. Without taking into account how the software actually operates, the test simply offers inputs and reacts to outputs.

Unit Testing:

The software development life cycle often incorporates a code and unit test phase where unit testing is performed. However, it is usual practise to separate the coding stage from the testing stage. This course will introduce you to the MATLAB Image Processing Toolbox. All of MATLAB's capabilities are outside the scope of this guide. If you have any questions not covered in this guide, you can get answers by selecting HelpMATLAB Help from the MATLAB window's menu bar. This course heavily borrows from MATLAB's online documentation by presenting updated versions of the example found there (figure 4).

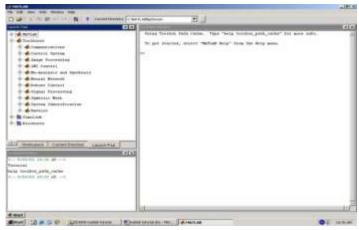
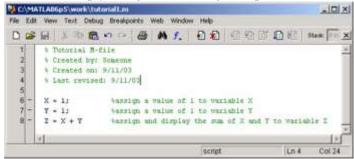


Figure 4: MATLAB window [2]


The right-hand window on the screen is the Command Window. This window is where you'll type commands for MATLAB to run, and it's also where you'll see the output of those commands. Recent commands typed into the Command Window are listed in the Command History window, located in the screen's bottom-left corner. There is a tabbed window in the top left corner of the screen that can hold up to three more windows. The first window is the Current Directory, which tells the user which M-files are currently in use. The second pane, labelled "Workspace," shows the size and scope of the currently active variables. The Launch Pad window, the third, is crucial since it provides quick access to the numerous toolboxes, including the Image Processing toolbox. If only two of the three windows are shown as tabs below the window space, click View and then choose the missing window. After the >> prompt, enter some code and hit return to move to the next prompt. A semicolon must be placed after a line of code if you do not want it to reappear in the MATLAB Command Window. If you don't end your code with a semicolon, it will appear in the command window directly beneath your typing.

Example 1:

X = 1; % press enter to go to next line Y = 1; % press enter to go to next line

Z = X + Y % press enter to receive result

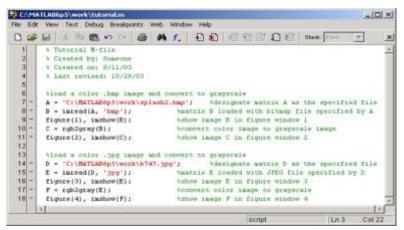

Z = 2, as you may have seen, was MATLAB's response to your last line of input. If there had been a semicolon following the final statement, the answer would not have been shown. Additionally, the instructions you entered are displayed in the Command History window, and the variables you used are displayed in the Workspace Window. To reenter a previously entered command, simply navigate to it using the up and down arrows (and). (figure 5).

Figure 5: Example of M-file [2]

A pixelated image may be a value matrix. If you're developing a filter, for instance, you'll need a test subject, but a genuine image isn't required just yet. As a result, it's easy to generate a matrix with the specified qualities, such as high- and low-frequency regions. At other times, processing an image requires importing it into MATLAB from some other location. Assuming it is not crucial, you can use rgb2gray to convert a colour image to a black-and-white one (figure 6).

499

Figure 6: M-file for Loading Images [2]

Frequency Domain

To understand how image processing filters function, you must first grasp how frequency impacts images. Images are two-dimensional discrete signals. Signals have frequencies. If grayscale values fluctuate little when you scan an image, it contains low-frequency material. If an image's grayscale values vary widely, it has greater frequency content. Let's put things in plain English. Any signal can be represented by sine waves of different frequencies, magnitudes, and phases, according to signal processing. Fourier transforms a signal into sinusoids. This collection of sine waves can be limitless if the signal is difficult to represent, but is often trimmed when adding more signals does not greatly increase signal resolution. In digital systems, we apply a Fourier Transform with discrete inputs, sampling rates, and discrete outputs. Discrete Fourier Transform (DFT) Fast Fourier Transform (FFT) is MATLAB's command for conducting a DFT. MATLAB's fft2 does a 2-D FFT. In image processing, we may then determine a picture's frequency content. Uncertain? Image as a two-dimensional signal matrix. If you plotted just one row to illustrate each pixel's grayscale value, you'd get a bar graph with fluctuating values. This signal's pixels may not correlate. Fourier Transform determines signal frequencies. To see the frequency content of a Fourier Transform, view its absolute magnitude.

Conclusion

In this study, we present a classification task model for breast cancer. There is discussion of using a Neural Network (NN) and Support Vector Machine (SVM) to determine if a breast tumour is benign or malignant. The accuracy and precision of NN and SVM were compared. In terms of accuracy and precision, the Neural Network approach used for classification in this research was found to be superior to that of SVM. According to the findings, the NN method outperforms the SVM method when it comes to identifying breast cancer. More sophisticated methods in Convolution Neural Networks will allow for more precise systems in the future.

References:

- Anusha, B & Madeshan, Narayanan & Scholar, Ug & Professor, Assistant. (2015). To Detect Brain Cancer in CT Image using Wiener Filter with K-Means Algorithm. International Journal of Applied Engineering Research, Vol. 10 No.33, pp. 25352-25356
- 2. "MATLAB 6.5 Image Processing Toolbox Tutorial," Otago.ac.nz. [Online]. Available: http://www.cs.otago.ac.nz/cosc451/Resources/matlab_ipt_tutorial.pdf. [Accessed: 25-Oct-2022].
- 3. F. Karim, H. Abulkasim, E. Alabdulkreem, N. Ahmed, M. Jamjoom, and S. Abbas, "Improvements on new quantum key agreement protocol with five-qubit Brown states," Modern Physics Letters A, vol. 37, p. 2250128, 2022.
- 4. H. Abulkasim, E. Alabdulkreem, and S. Hamad, "Improved Multi-party Quantum Key Agreement with Four-qubit Cluster States," CMC-Computers Materials & Continua, vol. 73, pp. 225-232, 2022.

- 5. H. Abulkasim, E. Alabdulkreem, F. Karim, N. Ahmed, M. Jamjoom, M. Hadjouni, et al., "Cryptanalysis and Improvements on Quantum Key Agreement Protocol Based on Quantum Search Algorithm," Security and Communication Networks, vol. 2022, 2022
- 6. H. Abulkasim, M. Jamjoom, and S. Abbas, "Securing Copyright Using 3D Objects Blind Watermarking Scheme," CMC-Computers Materials & Continua, vol. 72, pp. 5969-5983, 2022.
- 7. Elhadad, S. Hamad, A. Khalifa, and H. Abulkasim, "A steganography approach for hiding privacy in video surveillance systems," in Digital Media Steganography, ed: Elsevier, 2020, pp. 165-187.
- 8. Elhadad, S. Abbas, H. Abulkasim, and S. Hamad, "Improving the security of multi-party quantum key agreement with five-qubit Brown states," Computer Communications, vol. 159, pp. 155-160, 2020.
- 9. M. Jamjoom, H. Abulkasim, and S. Abbas, "Lightweight Authenticated Privacy-Preserving Secure Framework for the Internet of Vehicles," Security & Communication Networks, 2022.
- 10. H. Abulkasim and A. Alotaibi, "Improvement on 'multiparty quantum key agreement with four-qubit symmetric W state'," International Journal of Theoretical Physics, vol. 58, pp. 4235-4240, 2019.
- 11. B. R. Rajagopal, B. Anjanadevi, M. Tahreem, S. Kumar and M. Debnath, and K. Tongkachok, "Comparative Analysis of Blockchain Technology and Artificial Intelligence and its impact on Open Issues of Automation in Workplace," 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022, pp. 288-292.
- 12. B.R. Rajagopal, E. Kannapiran, A.D. Gupta, M.Momin and D.S.K. Chakravarthy, "The future prospects and challenges of implementing big data in healthcare management using Structural equation model analysis," Bull. Env. Pharmacol. Life Sci., Spl Issue [1] 2022, pp. 1111-1119, 2022.
- 13. N.P. Krishnam, M.S. Ashraf, B.R. Rajagopal, P.Vats and D.S.K. Chakravarthy and S.M. Rafi, "Analysis Of Current Trends, Advances And Challenges Of Machine Learning (Ml) And Knowledge Extraction: From Ml To Explainable AI," Industry Qualifications The Institute of Administrative Management UK, Vol. 58, pp. 54-62, May 2022.
- 14. A.D.Gupta, S.M. Rafi, B.R. Rajagopal, T.Milton and S.G.Hymlin, "Comparative analysis of internet of things (IoT) in supporting the health care professionals towards smart health research using correlation analysis," Bull.Env.Pharmacol. Life Sci., Spl Issue [1] 2022, pp. 701-708, 2022.
- 15. Roja Boina, "Assessing the Increasing Rate of Parkinson's Disease in the US and its Prevention Techniques", International Journal of Biotechnology Research and Development, 3(1), pp. 1-18, 2022.
- 16. G. Nagamalleswari, P. Prachet, A.E. Prabahar, P.V. Suresh, N. Rama Rao; Enantio Separation By Hplc A Review; IAJPR. 2015; 5(3): 1078-1083. N. Jaya Raju, Ch.Avinash, P.V. Suresh; Evaluation Of In Vitro Anthelmintic Activity Of Seed Extracts Of Thymus Serpyllum; IAJPR. 2015; 5(3): 1230-1233.
- 17. Gollapalli Nagararaju, Karumudi Bhavya Sai, Kota Chandana, Madhu Gudipati, P.V.Suresh, Nadendla Ramarao; synthesis, evaluation of antioxidant and antimicrobial study of 2-substituted benzothiazole derivatives; Indo American Journal of Pharmaceutical Research; 2015, 50 (03), pg. 1288.
- 18. M.P.Harshitha, P. Venkata Suresh, "Simultaneous determination of residual NSAIDS and antibiotics in raw milk by RP-HPLC", International Journal of Pharmaceutical Sciences and Research, 2014, Vol.5.
- 19. J. Ashok Kumar, P. Venkata Suresh, J. Priyanka, R. Anusha, N. Geetha Anupama, A. E.Prabahar, Rama Rao. N, "A Rapid and Novel Green Analytical Chemistry method for estimation of minocycline hydrochloride in pharmaceutical formulations by Fourier Transform Mid Infrared (FT-MIR) spectroscopy" International Journal of Pharmaceutical Analysis, 2014, 39 (1), 1205 1209.
- 20. K. Swathi, P. Venkata Suresh, A.Elphine Prabahar, "Colorimetric estimation of Ezetimibe in bulk and pharmaceutical dosage form by MBTH", Pharm analysis & quality assurance, 2014, 1-3.

- 21. P. Venkata Suresh, Rama Rao Nadendla and B. R. Challa; "Bio- analytical method development and validation of Valsartan by precipitation method with HPLC-MS/MS: Application to a pharmacokinetic study, Journal of Chemical and Pharmaceutical Research, 2013, 5(7):7-20.
- 22. P. Venkata Suresh, Rama Rao Nadendla and B. R. Challa; "Quantification of Desloratadine in Human Plasma by LC-ESI-MS/MS and Application to a Pharmacokinetic Study"; Elsevier Limited; Journal of Pharmaceutical Analysis, issue 2 (2012), 180-187.
- 23. P. Venkata Suresh, Rama Rao Nadendla and B. R. Challa; "Quantification of sibutramine and its two metabolites in human plasma by LC–ESI-MS/MS and its application in a bioequivalence study"; Elsevier Limited; Journal of Pharmaceutical Analysis, Vol.2, issue 4, (2012),pp. 249-257.
- 24. P. Venkata Suresh, Rama Rao Nadendla and B. R. Challa; "Quantitative analysis of eletriptan in human plasma by HPLC-MS/MS and its application to pharmacokinetic study", Springer, Anal Bioanal Chem.2011 Nov; 401(8):2539-48. Epub.2011 Sep 3.
- 25. P. Venkata Suresh, Rama Rao. Nadendla "HPTLC Method for the Simultaneous Estimation of Etophylline and Theophylline in Tablet Dosage Forms"; Asian journal of chemistry, 2011, 23, 1,309-311.
- 26. V. Venkatesh, N. Vijaya Lakshmi, P. Venkata Suresh, P, Mohana rao, K. Siva, G. Dhana Raju and N. Rama Rao, "Determination and validation of Modafinil in Pharmaceutical Formulation by Spectrophotometric and RP-HPLC Methods" Journal of Pharmacy research, 2011; 4(2):509-511.
- 27. Nagamalleswari, G., D.Phanendra, Prabahar, A.E., P. Venkata Suresh, Ramarao, N., "Development and validation of chromatographic method for simultaneous estimation of levocetricine and phenylepherine in pharmaceutical dosage forms" International journal of advances in pharmaceutical research, 2013, Vol 4, issue 7, 1921-26.
- 28. V. Venkatesh, A. Elphine Prabahar, P. Venkata Suresh, Ch. Uma Maheswari, and N. Rama Rao "RP-HPLC Method for Simultaneous Estimation of Azithromycin and Ambroxol Hydrochloride in Tablets" Asian journal of Chemistry, 2011, 23, 1,312-314.
- 29. P. Venkata Suresh, Rama Rao. Nadendla, "A New RP-HPLC Method For Simultaneous Estimation Of Etophylline And Theophylline In Tablets" Research Journal of Pharmacy and Technology; Vol: 4No:1: January-February: 2011.
- 30. V. Venkatesh, N. Vijaya Lakshmi, P. Venkata Suresh, Mohana rao, K. Siva, G. Dhana Raju and N. Rama Rao, "Determination and validation of Modafinil in Pharmaceutical Formulation by Spectrophotometric and RP-HPLC Methods"; Journal of Pharmacy Research, 2011; 4(2):509-511.
- 31. Ali-Mohammad Kamali , Milad Kazemiha, Behnam Keshtkarhesamabadi, Mohsan Daneshvari, Asadollah Zarifkar, Prasun Chakrabarti, Babak Kateb, Mohammad Nami "Simultaneous Transcranial and Transcutaneous Spinal Direct Current Stimulation to Enhance Athletic Performance Outcome in Experienced Boxers", Scientific Reports , 11: 19722, 2021.
- 32. Xin Wang, Yuhao Zhou, Tingwen Huang, Prasun Chakrabarti, "Event-triggered Adaptive Fault-tolerant Control for a Class of Nonlinear Multiagent Systems with Sensor and Actuator Faults", IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.
- 33. Tuan Pham Van, Dung Vo Tien, Zbigniew Leonowicz, Michal Jasiński, Tomasz Sikorski, Prasun Chakrabarti "Online Rotor And Stator Resistance Estimation Based On Artificial Neural Network Applied In Sensorless Induction Motor Drive", Energies, 13: 4946, 2020.
- 34. Prince, Ananda Shankar Hati, Prasun Chakrabarti, Jemal Hussein, Ng Wee Keong, "Development of Energy Efficient Drive for Ventilation System using Recurrent Neural Network", Neural Computing and Applications, 33:8659, 2021.

- 35. Papiya Debnath, Pankaj Chittora, Tulika Chakrabarti, Prasun Chakrabarti, Zbigniew Leonowicz, Michal Jasinski, Radomir Gono, Elżbieta Jasińska, "Analysis of earthquake prediction in India using supervised machine learning classifiers", Sustainibility, 13(2): 971, 2021.
- 36. Pankaj Chittora, Sandeep Chaurasia, Prasun Chakrabarti, Gaurav Kumawat, Tulika Chakrabarti, Zbigniew Leonowiz, Michael Jaisinski, Lukasz Jaisinski, Radomir Gono, Elzbieta Jaisinski, Vadim Bolshev, "Prediction of Chronic Kidney Disease A Machine Learning perspective", IEEE Access, 9:17312-17334,2021.
- 37. Imayanmosha Wahlang, Arnab Kumar Maji, Goutam Saha, Prasun Chakrabarti, Michał Jasiński, Zbigniew Leonowicz, Elzbieta Jasinska, "Deep Learning methods for classification of certain abnormalities in Echocardiography", Electronics, 10: 495., 2021.
- 38. Rajkumar Soni , Prasun Chakrabarti , Zbigniew Leonowicz , Michal Jasinski , Krzysztof Wieczorek , Vadim Bolshev, "Estimation of Life Cycle of Distribution Transformer in Context to Furan Content Formation , Pollution Index and Dielectric Strength", IEEE Access, 9: 37456, 2021.
- 39. Yogendra Singh Solanki, Prasun Chakrabarti, Michal Jasinski, Zbigniew Leonowicz, Vadim Bolshev, Alexander Vinogradov, Elzbieta Jasinska, Radomir Gono, Mohammad Nami, "A Hybrid Supervised Machine Learning Classifier System for Breast Cancer Prognosis Using Feature Selection and Data Imbalance Handling Approaches", Electronics, 10(6): 699, 2021.
- 40. Siddhartha Bhattacharyya, Tulika Dutta, Sandip Dey, Somnath Mukhopadhayay, Prasun Chakrabarti , "Hyperspectral Multi-level Image Thresholding using Qutrit Genetic Algorithm Expert Systems With Applications", Expert Systems with Applications, 181: 115107, 2021.
- 41. Ashish Kumar Sinha, Ananda Shankar Hati, Mohamed Benbouzid, Prasun Chakrabarti, "ANN-based Pattern Recognition for Induction Motor Broken Rotor Bar Monitoring under Supply Frequency Regulation", Machines, 9(5):87, 2021.
- 42. Sergey Senkevich, Vadim Bolshev, Ekaterina Ilchenko, Prasun Chakrabarti, Michał Jasiński, Zbigniew Leonowicz, Mikhail Chaplygin, "Elastic Damping Mechanism Optimization by Indefinite Lagrange Multipliers", IEEE Access, 9:71784,2021.
- 43. Akhilesh Kumar Sharma, Gaurav Aggarwal, Sachit Bhardwaj, Prasun Chakrabarti, Tulika Chakrabarti, Jemal Hussain, Siddhartha Bhattarcharyya, Richa Mishra, Anirban Das, Hairulnizam Mahdin, "Classification of Indian Classical Music with Time-Series Matching using Deep Learning", IEEE Access, 9: 102041-102052, 2021.
- 44. Tapan Behl, Anuja Singh ,Aayush Sehgal ,Sukhbir Singh , Neelam Sharma, Tanveer Naved, Saurabh Bhatia, Ahmed Al-Harrasi, Prasun Chakrabarti, Lotfi Aleya,Simona Bungau "Mechanistic Insights into the Role of B Cells in Rheumatoid Arthritis", International Immunopharmacology, 99: 108078, 2021.
- 45. Zuhaib Ashfaq Khan, Hafiz Husnain Raza Sherazi , Mubashir Ali, Muhammad Ali Imran, Ikram Ur Rehman, Prasun Chakrabarti , "Designing Wind Energy Harvester for Connected Vehicles in Green Cities", Energies , 14(17):5408, 2021.
- 46. Abrar Ahmed Chhipa, Vinod Kumar, R. R. Joshi, Prasun Chakrabarti, Michal Jaisinski, Alessandro Burgio, Zbigniew Leonowicz, Elzbieta Jasinska, Rajkumar Soni, Tulika Chakrabarti, "Adaptive Neuro-fuzzy Inference System Based Maximum Power Tracking Controller for Variable Speed WECS", Energies, 14(19):6275, 2021.
- 47. M A Berlin , N Upadhayaya, A Alghatani, V Tirth, S Islam, K Murali, P R Kshirsagar, Bui Thanh Hung, Prasun Chakrabarti , Pankaj Dadheech , "Novel hybrid artificial intelligence based algorithm to determine the effects of air pollution on human electroencephalogram signals", Journal of Environmental Protection and Ecology , 22(5): 1825-1835,2021.

- 48. M Abul Hasan, K Raghuveer, P S Pandey, Ashok Kumar, Ashim Bora, Deepa Jose, P R Kshirsagar, Bui Thanh Hung, Prasun Chakrabarti, M M Khanapurkar, "Internet of Things and its applications in Industry 4.0 for Smart Waste Management", Journal of Environmental Protection and Ecology, 22(6): 2368-2378,2021.
- 49. Vivek Jain, Prasun Chakrabarti, Massimo Mitolo, Zbigniew Leonowicz, Michal Jasinski, Alexander Vinogradov, Vadim Bolshev, "A Power-Efficient Multichannel Low-Pass Filter Based on the Cascaded Multiple Accumulate Finite Impulse Response (CMFIR) Structure for Digital Image Processing", Circuits, Systems and Signal Processing, 2022 (http://doi.org/10.1007/s00034-022-01960-5).
- 50. Akhilesh Kumar Sharma, Shamik Tiwari, Gaurav Aggarwal, Nitika Goenka, Anil Kumar, Prasun Chakrabarti, Tulika Chakrabarti, Radomir Gono, Zbigniew Leonowicz, Michal Jasiński, "Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network", IEEE Access, 10: 17920-17932, 2022.
- 51. Tanima Bhattacharya, Debashrita Das, Giselle A. Borges e Soares, Prasun Chakrabarti, Zhaoquan Ai, Hitesh Chopra, Alexandru Madalin Hasan, Simona Cavalu, "Novel Green Approaches for the Preparation of Gold Nanoparticles and Their Promising Potential in Oncology", Processes, 10(2): 426, 2022
- 52. Imayanmosha Wahlang, Arnab Kumar Maji, Goutam Saha, Prasun Chakrabarti, Michal Jasinski, Zbigniew Leonowicz, Elzbieta Jasinska, "Brain Magnetic Resonance Imaging Classification using Deep Learning Architectures with gender and age", Sensors, 22:1766, 2022.
- 53. S. Hemalatha, Pravin R. Kshirsagar, Hariprasath Manoharan, N. Vasantha Gowri, A. Vani, Sana Qaiyum, P. Vijayakumar, Vineet Tirth, Sulaima Lebbe Abdul Haleem, Prasun Chakrabarti and Dawit Mamiru Teressa "Novel Link Establishment Communication Scheme against Selfish Attack Using Node Reward with Trust Level Evaluation Algorithm in MANET", Wireless Communications and Mobile Computing, 2022 https://www.hindawi.com/journals/wcmc/2022/6776378/.
- 54. Gaurav Kumawat, Santosh Kumar Viswakarma, Prasun Chakrabarti, Pankaj Chittora, Tulika Chakrabarti, Jerry Chun-Wei Lin, "Prognosis of Cervical Cancer Disease by Applying Machine Learning Techniques", Journal of Circuits, Systems, and Computers, 2022.
- 55. M Vasaghi, S Z Mousavi, M Owrangi, M Zadeh, Ali Kamali, Mehdi Dehghani, Prasun Chakrabarti, Mohammad Nami, "Neural Correlates in Functional Brain Mapping among Breast Cancer Survivors Receiving Different Chemotherapy Regimens; a qEEG/HEG based Investigation", Japanese Journal of Clinical Oncology, 2022.
- 56. Maryam Owrangi, Mohammad Javad Gholamzadeh, Maryam Vasaghi Gharamaleki, Seyedeh Zahra Mousavi, Ali-Mohammad Kamali, Mehdi Dehghani, Prasun Chakrabarti, Mohammad Nami, "Comparative analysis of the chemotherapy-related cognitive impairments in patients with breast cancer: a community-based research", Cancer Investigation, 2022.
- 57. Hariprasath Manoharan, Radha Krishna Rambola, Pravin R. Kshirsagar, Prasun Chakrabarti, Jarallah Alqahtani, Quadri Noorulhasan Naveed, Saiful Islam, Walelign Dinku Mekuriyaw, "Aerial Separation and Receiver Arrangements on Identifying Lung Syndromes Using the Artificial Neural Network", Computational Intelligence and Neuroscience, 2022.
- 58. Negin Farhadian , Alireza Moradi , Mohammad Nami , Kamran Kazemi , Mohammad Rasoul Ghadami , Alireza Ahmadi , Reza Mohammadi , Mohammad Naseh Talebi , Prasun Chakrabarti , Babak Kateb , Habibolah Khazaie , "The nexus between sleep disturbances and mental health outcomes in military staff a systematic review", Sleep Science , 15(3),2022.
- 59. Chakrabarti P., Bhuyan B., Chaudhuri A. and Bhunia C.T., "A novel approach towards realizing optimum data transfer and Automatic Variable Key(AVK)", International Journal of Computer Science and Network Security, 8(5), pp.241-250, 2008.

504

- 60. Chakrabarti P., Goswami P.S., "Approach towards realizing resource mining and secured information transfer", International Journal of Computer Science and Network Security, 8(7), pp.345-350, 2008.
- 61. K. Suresh and E. Parimalasundar, "A Modified Multi Level Inverter with Inverted SPWM Control," in IEEE Canadian Journal of Electrical and Computer Engineering, vol. 45, no. 2, pp. 99-104, Spring 2022.
- 62. K. Suresh and E. Parimalasundar, "A novel dual-leg DC-DC converter for wide range DC-AC conversion," Automatika, vol. 63, no. 3, pp.572-579, 2022.
- 63. Parimalasundar Ezhilvannan and Suresh Krishnan, "An efficient asymmetric direct current (DC) source configured switched capacitor multi-level inverter," Journal Européen des Systèmes Automatisés, vol. 53, no. 6, pp.853-859, 2020.
- 64. E. Parimalasundar, S. Jayakumar, R. Ravikumar and K. Suresh, "Investigation analysis of open circuit and short circuit fault on cascaded H-bridged multilevel inverter using artificial neural network approach," International Journal of Electrical and Electronics Research (IJEER), vol. 10, no. 2, pp.320-326.
- 65. P. Srinivas Subbarao (2019), Work Life Balance a Challenge for employees in Indian IT & ITES Industry, Rupkatha Journal on interdisciplinary studies in humanities Vol. 11, No. 2, pp 1-12.
- 66. Srinivas Subbarao Pasumarti (2020), CSR and Socio-Economic Development A Case study of selected PSUs in the state of Odisha, Journal of Critical Reviews, Vol.7, Issue 13, pp.1407-1415.
- 67. P. Srinivas Subbarao (2019), Influence of Demographic Factors on Recruitment and Selection of Employees in IT & ITES Industry, Journal of Advanced Research in Dynamical and Control Systems, Vol.11, No.6, Pp-52-61
- 68. P. Srinivas Subbarao (2015), Accomplishment of Gandhian Globalization is a myth or reality, Research Journal of Commerce & behavioral Science, Vol 4, No 10.
- 69. P. Srinivas Subbarao (2013), Raison d'être for setting up SME exchange Golden Research Thoughts special edition on "Innovation for Sustainable Growth of Business" Vo.1, Sep'2013, Pp.71-74
- 70. P. Srinivas Subbarao (2013), Bank credit to infrastructure in India-Issues, Challenges and Strategies", International Journal of Decision Making in Management, Vol.2, Issue 1, Pp 55-62
- 71. P. Srinivas Subbarao, P. Suseela Rani (2011), Application of information Technology in Agriculture-An Indian Experience", Global Journal of Business Management Vol.5, No.1, pp-58-66
- 72. P. Srinivas Subbarao (2007) ,Changing Paradigm in Indian Banking, Gyan Management" an International Biannual Refereed Journal of Management & Technology, Vol.1 No.2 pp 51-60.
- 73. P. Srinivas Subbarao, P. Suseela Rani (2012), Participative Management in Post Liberalization -A Case study of Indian Jute Industry, European Journal of Business and Management, Vol.4, No.8, pp 37-46
- 74. P.Srinivas Subbarao (2015), Gandhian Principles of Management and its Contemporary Relevance, International Journals of Peace & Gandhian Studies titled Gandhian Vision, Vol.2, Issue-1, Pp-155-162.
- 75. Kavitha, M., Geetha, B.G. An efficient city energy management system with secure routing communication using WSN. Cluster Comput 22 (Suppl 6), 13131–13142, 2019.
- 76. Senthilraja, P., Geetha, B.G. Avoiding fuel theft in multifleet vehicles using vehicular adhoc network. Cluster Comput 22 (Suppl 5), 11175–11181,2019.
- 77. Chandraprabha, K., Geetha, B.G. Wireless network confidence level improvement via fusion adaptive resonance theory. Cluster Comput 22 (Suppl 5), 12251–12261, 2019.
- 78. C. K. N, C. M. V, P. K. K. Burugupalli, A. K. S V, and A. J, "Raspberry Pi Based RFID Smart Card Refuelling System", pices, vol. 2, no. 6, pp. 149-152, Oct. 2018.
- 79. Gokulraj, S, Geetha, BG. Integration of firefly optimization and Pearson service correlation for efficient cloud resource utilization. Int J Commun Syst. 2018; 31:e3771

- 80. Badhusha, SM, Geetha, BG, Prabhu, P, Vasanthi, R. Improved video streaming using MSVC and nonoverlapping zone routing multipath propagation over MANETs. Int J Commun Syst. 2018; 31:e3578.
- 81. Farhanath .K, Owais Farooqui, Dr.Senthil Kumar.R, Asique .K, "Comparative Analysis of Deep Learning Models for PCB Defects Detection and Classification", Journal of Positive Psychology & Wellbeing http://journalppw.com 2022, Vol. 6, No. 5, 4326–433, 2022
- 82. V. Kavitha and B. G. Geetha, "Review on high utility itemset mining algorithms," World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), 2016, pp. 1-5,2016
- 83. R. Kamalraj, B. G. Geetha and G. Singaravel, "Reducing Efforts on Software Project Management using Software Package Reusability," 2009 IEEE International Advance Computing Conference, 2009, pp. 1624-1627.
- 84. Geetha, B. G., Palanisamy, V., Duraiswamy, K., & Singaravel, G.," A tool for testing of inheritance related bugs in object oriented software", J. Comput. Sci, 4, 59-65,2008
- 85. Geetha, B G, Palanisamy, V, &Duraiswamy, K, 'A Study of Whole Program Analysis Testing and Fragment Analysis Testing', International Journal of Image processing and Network, Vol. 1, no. 1, pp. 8-12,2007.
- 86. Geetha, B G & Singaravel, G, 'Assessment and people risk management in software project', International journal of computer science and applications, Vol.1, no. 2,2008
- 87. Geetha, B G, Palanisamy, V, Duraiswamy, K & Singaravel, G, 'A Tool For Testing Of Inheritance Related Bugs In Object Oriented Software', Journal of Computer science, Science Publishers, Vol. 4, no.1, pp. 59-65,2008.
- 88. Geetha, B G & Palanisamy, V, 'Data flow testing of inheritance property in java software', International journal of soft computing, Vol.3, no.1, pp. 44-49, 2008.
- 89. Nirmal Kumar, A, GEETHA, B G, 'Improving the Software Quality by designing an effective test cases with an unit testing', Published in IJAIR, vol. 10, no. 7s, pp. 607-610, ISSN: 1097-8135, 2013.
- 90. Nirmalkumar, A &Geetha, B G, 'Achieving software engineering knowledge items with an unit testing approach', International Journal of Soft Computing and Engineering, vol. 2, no. 1, pp. 474-479, 2012
- 91. Geetha, B G &Nithya, D, 'Optimized Traveling Salesman problem Using Estimation Maximization Technique', Published in IJAIR, Vol. 2, no. 2, ISSN: 2278-7844, 2013.
- 92. Gopinath, R & Geetha, B G, 'An E-learning System Based on Secure Data Storage Services in Cloud Computing', International Journal of Information Technology and Web Engineering (IJITWE), Vol. 8,no. 2, pp. 1-17, 2013.
- 93. Geetha, B G &Govindaraj,M 'Retrieve the cloud data in efficient way using query services', Journal of international academic research for multidisciplinary, ISSN: 2320-5083,2014.
- 94. Nirmal Kumar, A&GEETHA, B G, 'A Systematic Study of Test Case Design in Software Testing', International Journal of Advanced and Innovative Research, Vol.3, no. 4, ISSN: 2278-7844, 2014.
- 95. Gopinath, R &Geetha, B G, 'Dynamic Block Level Error Recovery to Trust Multimedia Data for E-Learning Cloud Based Storage Services', Journal of International Applied Sciences Engineering and Technology ISSN: 2040 7459, 2014.
- 96. Geetha, B G, Gokul, K, Nikhila&Buvaneswari, 'Cloud Based Anti Vehicle Theft by Using Number PlateRecognition', International Journal of engineering Research and General Science, Vol. 2, no. 2, 2014.
- 97. Kalaimani, G &Geetha, B G, 'Object Movement Prediction Technique for Cluster Based Location Monitoring Technique in Mobile Computing Environment', Asian Journal of Information Technology,vol.15,no.8,pp.1349-1358, 2016.
- 98. Vijayalakshmi, P & Geetha, B G, 'A Misdirected Route Avoidance Using Topological Transform Adaptive Relational QoS Routing in Wireless Sensor Network', Asian Journal of Information Technology,vol.15,no.17,pp.3398-3406, ISSN: 1682-3915 (Print), 1993-5994, 2016.

- 99. Kavitha, V &Dr Geetha, B G, 'Review on High Utility Itemset Mining Algorithms', Asian Journal of Research in Social Sciences and Humanities, Vol. 6, no. 5, pp. 123-133, 2016.
- 100. Kavitha, V &Dr Geetha, B G 2016, 'High Utility Itemset Mining With Influential Cross Selling Items From Transactional Database', International Journal of Advanced Engineering Technology, Vol. VII, no.II,pp. 820-826, 2016.
- 101. Geetha B G, Sasikumar D,"Protection System For Humans and Animals From Electric Fence Using Iot and Cloud", International Journal of Innovative Research In Computer And Communication Engineering, Volume 8 No 3, 2020.
- 102. Geetha B G, Varshini R,"Preserve Cloud Data Using Multi-Keyword Ranked Search over Encrypted Technique", International Journal of Innovative Research In Computer and Communication Engineering, Volume 8 No 3, 2020.
- 103. Geetha B G , Navaneethan m Testing And Quality Validation For Ai Software—Perspectives, Issues, And Practices, International Journal for Science and Advance Research in Technology, Volume 7 Issue 4, 2021.
- 104. Ramana, S., Sabitha, S., Kumar, R. S., & Prakash, T. S. Atmospheric Change on the Geographical Theme Finding Of Different Functions on Human Mobility". International Journal of Scientific Research in Computer Science and Engineering, 6(2), 134-151,2018.
- 105. Pandya S., R. Gadekallu, P. K. Reddy, W. Wang and M. Alazab, "InfusedHeart: A Novel Knowledge-Infused Learning Framework for Diagnosis of Cardiovascular Events," IEEE Transactions on Computational Social Systems, doi: 10.1109/TCSS.2022.3151643.
- 106. Ghayvat, H., Pandya, S., Bhattacharya, P., Zuhair, M. et al., CP-BDHCA: Blockchain- based Confidentiality-Privacy preserving Big Data scheme for healthcare clouds and applications, IEEE Journal of Biomedical and Health Informatics(J-BHI), doi: 1109/JBHI.2021.3097237.
- 107. Ghayvat, H., Awais, M., Bashir, Pandya S., K. et al. AI-enabled radiologist in the loop: novel AI-based framework to augment radiologist performance for COVID-19 chest CT medical image annotation and classification from pneumonia. Neural Comput & Applic (2022).
- 108. Ghayvat, H., Pandya, S., M. Awais, K. Dev, "STRENUOUS: Edge-Line Computing, AI and IIoT enabled GPS Spatiotemporal data-based Meta-transmission Healthcare Ecosystem for Virus Outbreaks Discovery", IEEE Internet of Things Journal, doi: 10.1109/JIOT.2022.3147428.
- 109. Arikumar, K.S.; Prathiba, S.B.; Alazab, M.; Gadekallu, T.R.; Pandya, S.; Khan, J.M.; Moorthy, R.S. FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Sensors 2022, 22, 1377.
- 110. Patil S, Pandya "Forecasting Dengue Hotspots Associated with Variation in Meteorological Parameters Using Regression and Time Series Models." Frontiers in public health. 2021;9.
- 111. Pandya Sharnil, Sur, A, Solke, N, COVIDSAVIOUR: A Novel Sensor-Fusion and Deep Learning-Based Framework for Virus Outbreaks, Frontiers in Public Health, doi: 10.3389/fpubh.2021.797808
- 112. Pandya, and Ghayvat, H., Ambient acoustic event assistive framework for identification, detection, and recognition of unknown acoustic events of a residence. Advanced Engineering Informatics, 47, p.1012, 2021, Elsevier.
- 113. Ghayvat, H., Awais, M., Gope, P., Pandya, S. and Majumdar, S., 2021. ReCognizing SUspect and PredictiNg ThE SpRead of Contagion Based on Mobile Phone LoCation DaTa: A System of identifying COVID-19 infectious and hazardous sites, detecting disease outbreaks based on the internet of things, edge computing, and artificial intelligence, Sustainable Cities and Society, p.102798, Elsevier.

- 114. Pandya, Sharnil, Aanchal Thakur, Santosh Saxena, Nandita Jassal, Chirag Patel, Kirit Modi, Pooja Shah, Rahul Joshi, Sudhanshu Gonge, Kalyani Kadam, and Prachi Kadam. A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions, Sensors, 2021, 23: 7786. https://doi.org/10.3390/s21237786.
- 115. Abolfazl Mehbodniya, L. Arokia Jesu Prabhu, Julian L. Webber, Dilip Kumar Sharma, Pandya, Sharnil, Fetal Health Classification from Cardiotocographic Data Using Machine Learning, Expert Systems, Wiley,
- 116. Mishra, N. and Pandya, , Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review, IEEE Access, April 2021.
- 117. Nivedita Mishra, Pandya, Sharnil Chirag Patel et al. Memcached: An Experimental Study of DDoS Attacks for the Wellbeing of IoT applications", Sensors 2022.
- 118. Shah A, Ahirrao S, Pandya S, Kotecha K and Rathod S, Smart Cardiac Framework for an Early Detection of Cardiac Arrest Condition and Risk, Frontiers in Public Health, doi: 10.3389/fpubh.2021.762303
- 119. Sushruta Mishra, Hrudaya Kumar Tripathy, Hiren Kumar Thakkar, Deepak Garg, Ketan Kotecha*, Sharnil Pandya, An Explainable Intelligence Driven Query Prioritization using Balanced Decision Tree Approach for Multi Level Psychological Disorders Assessment, Frontiers in Public Health, 2021 doi: 3389/fpubh.2021.797808
- 120. Ghayvat, ; Awais, M.; Pandya, S.; Ren, H.; Akbarzadeh, S.; Chandra Mukhopadhyay, S.; Chen, C.; Gope, P.; Chouhan, A.; Chen, W. Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection. Sensors, 19, 766. [IF: 3.5]
- 121. Pandya, S, Sur, A. and Kotecha, K., "Smart epidemic tunnel: IoT-based sensor-fusion assistive technology for COVID-19 disinfection", International Journal of Pervasive Computing and Communications, Emerald Publishing.
- 122. Srivastava, A., Jain, S., Miranda, R., Patil, S., Pandya, S., Kotecha K. 2021. Deep learning-based respiratory sound analysis for detection of chronic obstructive pulmonary PeerJ Computer Science 7:e369.
- 123. Karn, A.L., Pandya, S., Mehbodniya, A. et al. An integrated approach for sustainable development of wastewater treatment and management system using IoT in smart Soft Computing, Springer, 2021. https://doi.org/10.1007/s00500-021-06244-9.
- 124. Pandya, S., Ghayvat, H., Sur, A., Awais, M., Kotecha, K., Saxena, S., Jassal, N., Pingale, G. Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Sensors, 2020, 20, 5448.
- 125. Awais, , Ghayvat, H., Krishnan Pandarathodiyil, A., Nabillah Ghani, W.M., Ramanathan, A., Pandya, S., Walter, N., Saad, M.N., Zain, R.B., Faye, I. Healthcare Professional in the Loop (HPIL): Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging. Sensors, 2020, 20, 5780.
- 126. Patel, C.I., Labana, D., Pandya, S., Modi, K., Ghayvat, H. and Awais, M., 2020. Histogram of Oriented Gradient-Based Fusion of Features for Human Action Recognition in Action Video Sensors, 20(24), p.7299. [IF: 3.5]
- 127. Pandya, , Ghayvat, H.; Kotecha, K.; Awais, M.; Akbarzadeh, S.; Gope, P.; Mukhopadhyay, S.C.; Chen, W. Smart Home Anti-Theft System: A Novel Approach for Near Real-Time Monitoring and Smart Home Security for Wellness Protocol. Appl. Syst. Innov.
- 128. Barot, V., Kapadia, V., & Pandya, S., QoS Enabled IoT Based Low Cost Air Quality Monitoring System with Power Consumption Optimization, Cybernetics and Information Technologies, 2020, 20(2), 122-140, Bulgarian Academy of Science.
- 129. Pandya, S., Wakchaure MA, Shankar R, Annam JR. Analysis of NOMA-OFDM 5G wireless system using deep neural network. The Journal of Defense Modeling.

Published by "CENTRAL ASIAN STUDIES" http://www.centralasianstudies.org

508

- 130. Mehta P, Pandya S., Kotecha K. 2021. Harvesting social media sentiment analysis to enhance stock market prediction using deep learning, PeerJ Computer Science 7:e369.
- 131. Sur S., Pandya, S., Ramesh P. Sah, Ketan Kotecha & Swapnil Narkhede, Influence of bed temperature on performance of silica gel/methanol adsorption refrigeration system at adsorption equilibrium, Particulate Science.
- 132. Sur, A., Sah, R., Pandya, S., Milk storage system for remote areas using solar thermal energy and adsorption cooling, Materials Today, Volume 28, Part 3,
- 133. R. Agarwal and N. Rao, "ML-based classifier for Sloan Digital Sky spectral objects," Neuroquantology, vol. 20, no. 6, pp. 8329–8358, 2022, doi: 10.14704/nq.2022.20.6.NQ22824.
- 134. R. Agarwal, "Edge Detection in Images Using Modified Bit-Planes Sobel Operator," 2014, pp. 203–210. doi: 10.1007/978-81-322-1771-8_18.
- 135. A. Rashi and R. Madamala, "Minimum relevant features to obtain ai explainable system for predicting breast cancer in WDBC," Int J Health Sci (Qassim), Sep. 2022, doi: 10.53730/ijhs.v6nS9.12538.
- 136. R. A. A. Agarwal, "Decision Support System designed to detect yellow mosaic in Pigeon pea using Computer Vision," Design Engineering (Toronto), vol. 8, pp. 832–844, 2021.
- 137. R. Agarwal, S. Hariharan, M. Nagabhushana Rao, and A. Agarwal, "Weed Identification using K-Means Clustering with Color Spaces Features in Multi-Spectral Images Taken by UAV," in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Jul. 2021, pp. 7047–7050. doi: 10.1109/IGARSS47720.2021.9554097.
- 138. D.K. Srivastava and B. Roychoudhury, "Words are important: A textual content based identity resolution scheme across multiple online social networks," Knowledge-Based Systems, vol. 195, 105624, 2020.
- 139. D.K. Srivastava and B. Roychoudhury, "Understanding the Factors that Influence Adoption of Privacy Protection Features in Online Social Networks," Journal of Global Information Technology Management, vol.24, no.3, pp. 164-182, August 2021
- 140. Anupriya Kambe, Shaikh Abdul Hannan, Ramesh Manza and Mohammad Eid Alzahrani, "Prediction of Prediabetes, No Diabetes and Diabetes Mellitus -2 usnig Simple Decision Tree Classification" Springer, Rising Threats in Expert Applications and Solutions. 2021 at IIS University, 2021.
- 141. Swati Saxena, Shaikh Abdul Hannan, "A Quaitative Review on Intervention of Robotics in Medical Science", International Journal of Computer Application(IJCA), Vol. 179, Number 46, 2021, ISSN 0975-8887, USA.
- 142. Anupriya Kamble, Sonali Gaikwad Shaikh Abdul Hannan, Mohammed Alwazzab Alzaharani, Ramesh Manza, "Prediction of the State of Diabetes Disorder using Simple Decision Tree Classification Technique", Pensee Journal, Vol 51 issue 04, 2021.
- 143. Yogesh Rajput, Shaikh Abdul Hannan, Design New Wavelet Filter for Detection and Grading of Non-proliferative Diabetic Retinopathy Lesions, International Conference on Recent Trends in Image Processing and Pattern Recognition, Jan 2020, Springer, Singpore.
- 144. Anupriya Kamble, Shaikh Abdul Hannan, Ramesh Manza and Mohammad Eid Alzahrani, "Prediction of Prediabetes, No Diabetes and Diabetes Mellitus -2 usnig Simple Decision Tree Classification" Springer FICR International Conference on Rising Threats in Expert Applications and Solutions. 2020 at IIS University, 17-19 Jan, 2020 Jaipur.
- 145. D. K. Sharma, B. Singh, R. Regin, R. Steffi and M. K. Chakravarthi, "Efficient Classification for Neural Machines Interpretations based on Mathematical models," 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 2021, pp. 2015-2020.

- 146. F. Arslan, B. Singh, D. K. Sharma, R. Regin, R. Steffi and S. Suman Rajest, "Optimization Technique Approach to Resolve Food Sustainability Problems," 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), 2021, pp. 25-30.
- 147. G. A. Ogunmola, B. Singh, D. K. Sharma, R. Regin, S. S. Rajest and N. Singh, "Involvement of Distance Measure in Assessing and Resolving Efficiency Environmental Obstacles," 2021 International Conference on Computational Intelligence and Knowledge Economy, 2021, pp. 13-18.
- 148. D. K. Sharma, B. Singh, M. Raja, R. Regin and S. S. Rajest, "An Efficient Python Approach for Simulation of Poisson Distribution," 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), 2021, pp. 2011-2014.
- 149. D. K. Sharma, B. Singh, E. Herman, R. Regine, S. S. Rajest and V. P. Mishra, "Maximum Information Measure Policies in Reinforcement Learning with Deep Energy-Based Model," 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), 2021, pp. 19-24.
- 150. Sagar Vakhare, Ramesh Manza, Abdul Hannan Shaikh and Anubha Jain, "Time Series Analysis and Forecasting of Temperatures Records in Aurangabad District of Maharashtra", Springer FICR International Conference on Rising Threats in Expert Applications and Solutions. 2020 at IIS University, 17-19 Jan, 2020 Jaipur.
- 151. Anupriya Kamble, Shaikh Abdul Hannan, Yogesh Rajput and Ramesh Manza, "Prediction of Prediabetes, No Diabetes and Diabetes Mellitus-2 using Pattern Recognition", Springer FICR International Conference on Rising Threats in Expert Applications and Solutions. 2020 at IIS University, 17-19 Jan, 2020 Jaipur.
- 152. Yogesh Rajput, Shaikh Abdul Hannan, Dnyaneshwari Patil, Ramesh Manza "Design New Wavelet Filter for Detection and Grading of Non-Proliferative Diabetic Retinopathy Lesions" The 3rd International Conference on recent Trends in Image Processing and pattern recognition, Springer conference, Jan 2020, Aurangabad, Maharashtra, India.
- 153. Y. M. Rajput, A. H. Hannan, M. E. Alzahrani, R. R. Manza, D. D. Patil, "EEG-Based Emotion Recognition Using Different Neural Network and Pattern Recognition Techniques—A Review", International Journal of Computer Sciences and Engineering, Vol 6, Issue 9, Sep 2018.
- 154. Mohammad Eid Alzaharani and Shaikh Abdul Hannan, "Diagnosis and Medical Prescription of Heart Disease Using FFBP, SVM and RBF", Page 6-15., Issue, 1, Vol 5, KKU Journal of Basic and Applied Sciences, Mar 2019.
- 155. Santosh Maher, Shaikh Abdul Hannan, Sumegh Tharewal, K. V. Kale "HRV based Human Heart Disease Prediction and Classification using Machine Learning "December 2019, (Vol. 17 No. 2 International Journal of Computer Science and Information SecApplication (IJCA), New York, USA.
- 156. Akram Ablsubari, Shaikh Abdul Hannan, Mohammed Eid Alzaharani, Rakesh Ramteke, "Composite Feature Extraction and Classification for Fusion of Palmprint and Iris Biometric Traits", Engineering Technology and Applied Science Research, (ETASR) Volume 9, No 1, Feb 2019, Greece.
- 157. Santosh K. Maher, Sumegh Tharewal, Abdul Hannan, "Review on HRV based Prediction and Detection of Heart Disease", International Journal of Computer Applications (0975 8887), Pag 7-12, Volume 179 No.46, June 2018.
- 158. Y. M. Rajput, Shaikh Abdul Hannan, Mohammed Eid Alzahrani, R. R. Manza, Dnyaneshwari D. Patil, "EEG-Based Emotion Recognition Using Different Neural Network and Pattern Recognition Techniques A Review" Vol 7, Issue 1, Jan 2019, E- ISSN: 2347-2693, India.

Yogesh Rajput, Shaikh Abdul Hannan, Mohammed Eid Alzaharani, D. Patil Ramesh Manza, Design and Development of New Algorithm for person identification Based on Iris statistical features and Retinal blood Vessels Bifurcation

points" International Conference on Recent Trends in Image Processing & Pattern Recognition (RTIP2R), December 21-22, 2018, India.

